首页 | 本学科首页   官方微博 | 高级检索  
     

利用融合高度与单目图像特征的支持向量机模型识别杂草
作者姓名:王璨  李志伟
作者单位:山西农业大学工学院,太谷,030801
基金项目:山西省科技攻关项目:山西优势草种驯化培育及产业化开发-作物识别机械化除草关键技术研究(20140311013-5)
摘    要:除草是保证农作物高产的必要工作。针对机械化除草和智能喷药中存在的杂草识别问题,以2~5叶苗期玉米及杂草为研究对象,进行了融合高度特征与单目图像特征的杂草识别方法研究。首先从单目图像中提取16个形态特征和2个纹理特征;然后基于双目图像,提出了针对植株的高度特征提取方法,所得高度特征与实际测量值间误差在±12 mm以内;利用max-min ant system算法对形态特征进行优化选择,将形态特征减少到6个,有效减少数据量62.5%,并与纹理和高度特征进行融合;将2~5叶玉米幼苗的可除草期划分为3个阶段,分别构建融合高度特征与单目图像特征的SVM识别模型,并与相应不含高度特征模型进行对比。经测试,3个阶段模型的识别准确率分别为96.67%,100%,98.33%;平均识别准确率达98.33%。不含高度特征模型的识别准确率分别为93.33%,91.67%,95%;平均识别准确率为93.33%。结果表明,融合高度特征与单目图像特征的SVM识别模型优于不含高度特征模型,平均识别准确率提高了5百分点。该方法实现了高准确率的杂草识别,研究结果为农业精确除草的发展提供参考。

关 键 词:双目视觉  支持向量机  特征提取  杂草识别  双目图像  特征融合
收稿时间:2016-01-23
修稿时间:2016-04-28
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号