首页 | 本学科首页   官方微博 | 高级检索  
     


Intellectual prediction of a permeability index for blast furnaces
Authors:LIANG Dong  BAI Chen guang  WEN Liang yin  WANG Feng  LV Xue wei  ZHANG Sheng fu
Affiliation:College of Material Science and Engineering, Chongqing University, Chongqing 400030, P. R. China;College of Material Science and Engineering, Chongqing University, Chongqing 400030, P. R. China;College of Material Science and Engineering, Chongqing University, Chongqing 400030, P. R. China;College of Material Science and Engineering, Chongqing University, Chongqing 400030, P. R. China;College of Material Science and Engineering, Chongqing University, Chongqing 400030, P. R. China;College of Material Science and Engineering, Chongqing University, Chongqing 400030, P. R. China
Abstract:
The permeability index for blast furnaces is an important monitoring parameter in their operation. Proper trend prediction of the permeability index is important for good operation. Support vector machines (SVM) combined with wavelet analysis are adopted to build a forecasting model. Four historic values of a permeability index are analyzed by a wavelet analysis via seven levels. Based on eight wavelet analyzed values and combined with operating parameters, eight sub models are built using the least square support vector machines method. The prediction components are reconstructed to obtain a forecast. The details of modeling, validation and result analyses are presented.
Keywords:blast furnace   permeability index   wavelet analyze   support vector machines
点击此处可从《保鲜与加工》浏览原始摘要信息
点击此处可从《保鲜与加工》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号