首页 | 本学科首页   官方微博 | 高级检索  
     

森林地上生物量遥感估算方法
引用本文:田晓敏,张晓丽. 森林地上生物量遥感估算方法[J]. 北京林业大学学报, 2021, 43(8): 137-148. DOI: 10.12171/j.1000-1522.20200166
作者姓名:田晓敏  张晓丽
作者单位:北京林业大学森林培育与保护教育部重点实验室,精准林业北京市重点实验室,北京 100083;北华航天工业学院遥感信息工程学院,河北 廊坊 065000;河北省航天遥感信息处理与应用协同创新中心,河北 廊坊 065000;北京林业大学森林培育与保护教育部重点实验室,精准林业北京市重点实验室,北京 100083
基金项目:人工林资源监测关键技术研究(2017YFD0600900)
摘    要:生物量是林业和生态应用研究的重要信息,森林生态系统地上生物量估算的遥感技术引起了国内外学者的广泛关注.总结与探讨不同数据源与估算方法能够为森林地上生物量的估算提供指导.本文首先总结并探讨单传感器遥感数据,包括光学遥感、合成孔径雷达与激光雷达数据在森林地上生物量估算中的应用,以及协同使用多源遥感数据估算森林地上生物量的优...

关 键 词:森林地上生物量  光学遥感  合成孔径雷达  激光雷达  多源遥感
收稿时间:2020-06-01

Estimation of forest aboveground biomass by remote sensing
Tian Xiaomin,Zhang Xiaoli. Estimation of forest aboveground biomass by remote sensing[J]. Journal of Beijing Forestry University, 2021, 43(8): 137-148. DOI: 10.12171/j.1000-1522.20200166
Authors:Tian Xiaomin  Zhang Xiaoli
Affiliation:1.Key Laboratory for Silviculture and Conservation of Ministry of Education, Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China2.School of Remote Sensing and Information Engineering, North China Institute ofAerospace Engineering, Langfang 065000, Hebei, China3.Hebei Collaborative Innovation Center for Aerospace Remote Sensing InformationProcessing and Application, Langfang 065000, Hebei, China
Abstract:Biomass is an important information in the study of forestry and ecological applications, and remote sensing technology of aboveground biomass estimation in forest ecosystems has attracted intensive attention of the international scholars. Reviewing and discussing different data sources and estimation methods can provide guidance for estimation of forest aboveground biomass. This study discussed the application of single sensor remote sensing data, including optical remote sensing, synthetic aperture radar and LiDAR data in forest biomass estimation, and the advantages of using multi-sources remote sensing data to estimate forest biomass. Then we discussed the traditional analysis methods and machine learning methods (decision tree regression, k-nearest neighbor, artificial neural network, support vector regression, maximum entropy) used for estimating forest biomass. Multi-source remote sensing data integration can combine the advantages of different data and provide rich characteristic information for forest aboveground biomass estimation. Combining machine learning methods is a development trend to improve the accuracy of forest aboveground biomass estimation. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京林业大学学报》浏览原始摘要信息
点击此处可从《北京林业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号