首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合蛙跳算法的马铃薯病害图像分割优化
引用本文:张明,王生荣,郭小燕. 基于混合蛙跳算法的马铃薯病害图像分割优化[J]. 植物保护学报, 2018, 45(3): 478-488
作者姓名:张明  王生荣  郭小燕
作者单位:甘肃农业大学草业学院;兰州城市学院电子与信息工程学院;甘肃农业大学信息科学技术学院
基金项目:甘肃农业大学青年导师基金项目(GAU-QNDS-201607)
摘    要:针对Otsu算法对直方图呈现多峰多谷的复杂马铃薯病害图像分割效果不佳的问题,结合混合蛙跳算法(shuffled frog leaping algorithm,SFLA)提出了一种Otsu-SFLA分割优化模型,将Otsu病害图像的分割结果作为SFLA算法的优化起点,进行复杂背景的马铃薯病害图像的分割优化,将马铃薯叶枯病、马铃薯晚疫病、马铃薯菌核病、马铃薯根腐线虫病、马铃薯灰霉病的病害图像作为分割对象进行分割,分割匹配率分别为97.0%、96.2%、96.9%、95.7%、94.8%,平均分割匹配率为96.1%,错误率分别为1.6%、1.1%、1.2%、1.1%、1.4%、平均错误率为1.3%,正确率分别为95.4%、95.1%、95.7%、94.6%、93.4%,平均正确率为94.8%,表明Otsu-SFLA模型可有效从复杂马铃薯病害图像中获取病斑区域。

关 键 词:混合蛙跳算法  Otsu算法  图像分割  分割优化  马铃薯病害
收稿时间:2017-05-23

Segmentation optimization of potato disease images base-on shuffled frog leaping algorithm
Zhang Ming,Wang Shengrong and Guo Xiaoyan. Segmentation optimization of potato disease images base-on shuffled frog leaping algorithm[J]. Acta Phytophylacica Sinica, 2018, 45(3): 478-488
Authors:Zhang Ming  Wang Shengrong  Guo Xiaoyan
Affiliation:Grassland Science College, GansuAgricultural University, Lanzhou 730070, Gansu Province, China;School of Electronics and Information Engineering, Lanzhou City University, Lanzhou 730070, Gansu Province, China,Grassland Science College, GansuAgricultural University, Lanzhou 730070, Gansu Province, China and Information & Science Technology College, Gansu Agricultural University, Lanzhou 730070, Gansu Province, China
Abstract:According to the problem that the Otsu algorithm does not have a good segmentation effect on the complex potato disease images whose histogram presents multiple peaks and valleys, an Otsushuffled frog leaping algorithm (Otsu-SFLA) segmentation optimization model was put forward in this paper, assuming the segmentation result of Otsu algorithm to be the original value of SFLA optimization to start the next optimization. In order to verify the validity of this model, leaf blight, late blight, sclerotium, root rot nematode and gray mold of potatoes were taken as the test segmentation targets, the matching ratio of segmentation could reach 97.0%, 96.2%, 96.9%, 95.7%, 94.8%, respectively, the average matching ratio was 96.1%, the error ratio could reach 1.6%, 1.1%, 1.2%, 1.1%, 1.4%, respectively, the average error ratio was 1.3%, and the correct ratio could reach 95.4%, 95.1%, 95.7%, 94.6% and 93.4%, respectively, the average correct ratio was 94.8%. The test result demonstrated that Otsu-SFLA model can effectively extract the disease symptom area from complex potato disease images.
Keywords:shuffled frog leaping algorithm  Otsu algorithm  image segmentation  segmentation optimization  potato diseases
本文献已被 CNKI 等数据库收录!
点击此处可从《植物保护学报》浏览原始摘要信息
点击此处可从《植物保护学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号