首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biological control ofBotrytis cinerea in residues and flowers of Rose (Rosa hybrida)
Authors:Joseli da Silva Tatagiba  Luiz Antonio Maffia  Roberto W Barreto  Acelino C Alfenas  John C Sutton
Institution:1. Depto de Fitopatologia, Universidade Federal de Vi?osa, 36570, Vi?osa, Minas Gerais, Brazil
2. Dept. of Environmental Biology, University of Guelph, Guelph, ON, NIG 2W1, Canada
Abstract:Microbial isolates from living petals, petal residues and leaf residues of rose, and from laboratory collections, were evaluated for control ofBotrytis cinerea in rose. In leaf residues artificially infested withB. cinerea, isolates of the filamentous fungiGliocladium roseum, FR136 (unidentified) andTrichoderma inhamatum reduced sporulation of the pathogen by >90%, other filamentous fungi were 25–90% effective, and those of yeasts and bacteria were <50% effective. In artificially inoculated petal residues, no microbe reduced sporulation ofB. cinerea by >75%, but isolates ofCladosporium oxysporum and four yeasts were 51–75% effective, and three filamentous fungi, eight yeasts andBacillus subtilis isolates were 26–50% effective. Isolates ofT. inhamatum, C. oxysporum andG. roseum performed best againstB. cinerea among isolates evaluated in leaf residues naturally infested with the pathogen and indigenous microorganisms. Totals of ten isolates of filamentous fungi (includingC. oxysporum andC. cladosporioides), two of yeasts and five ofBacillus subtilis completely prevented lesion production byB. cinerea in detached petals, and a further six isolates of filamentous fungi (includingG. roseum) and six yeasts were 90–99% effective. Isolates ofC. oxysporum, C. cladosporioides andB. subtilis, the most effective microorganisms againstB. cinerea in flower buds, reduced number of lesions in the range of 42–65% compared with 59–89% for à standard fungicide (vinclozolin). It is suggested that application of leading antagonists Jo living rose leaves and flowers should optimize control of inoculum production byB. cinerea when the tissues die. Optimal biocontrol of lesion production in flower buds requires a better understanding of the microenvironment of petals.
Keywords:Rose            Botrytis cinerea            biological control
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号