首页 | 本学科首页   官方微博 | 高级检索  
     

加权空间模糊动态聚类算法在土壤肥力评价中的应用
引用本文:陈桂芬,曹丽英,王国伟. 加权空间模糊动态聚类算法在土壤肥力评价中的应用[J]. 中国农业科学, 2009, 42(10): 3559-3563. DOI: 10.3864/j.issn.0578-1752.2009.10.0022
作者姓名:陈桂芬  曹丽英  王国伟
作者单位:1. 吉林农业大学信息技术学院,长春,130118;吉林大学计算机科学技术学院,长春,130062
2. 吉林农业大学信息技术学院,长春,130118
基金项目:国家高技术研究发展计划(863计划),吉林省科技厅重点项目 
摘    要: 【目的】改进和提高空间模糊聚类算法。【方法】首先利用层次分析法得到各属性的权值,然后将权值与空间模糊动态聚类法相结合,最后利用概率统计中的F分布来确定最佳分类,以提高空间模糊聚类算法的智能性。【结果】加权空间模糊动态聚类算法与基于模糊等价关系的传递闭包方法进行比较表明,当λ取0.993时,F值最大,分类效果最好。此时,加权的F值为4.898,未加权的F值为2.957,说明加权的类间的差距比未加权的明显,即该算法聚类准确率要明显高于未加权的模糊聚类算法。【结论】将其改进的算法运用到精准农业的土壤肥力评价中,试验结果与实际情况相符,证明了该算法的有效性。

关 键 词:空间模糊聚类  精准农业  土壤肥力评价  属性加权
收稿时间:2009-01-13;

Application of Weighted Spatially Fuzzy Dynamic Clustering Algorithm in Evaluation of Soil Fertility
CHEN Gui-fen,CAO Li-ying,WANG Guo-wei. Application of Weighted Spatially Fuzzy Dynamic Clustering Algorithm in Evaluation of Soil Fertility[J]. Scientia Agricultura Sinica, 2009, 42(10): 3559-3563. DOI: 10.3864/j.issn.0578-1752.2009.10.0022
Authors:CHEN Gui-fen  CAO Li-ying  WANG Guo-wei
Affiliation:(College of Information and Technology Science, Jilin Agricultural University)
Abstract:【Objective】 As a traditional fuzzy clustering algorithm has its shortages, an improved algorithm was presented in the paper. 【Method】 First, access to the weighted value of each attribute using AHP, and then add weighted value to the spatial fuzzy dynamic clustering algorithm, finally, use F- distribution of probability statistics to determine the best classification number in order to improve the algorithm intelligence. 【Result】 The weighted spaces fuzzy dynamic cluster algorithm was compared with the fuzzy equivalent relations transitive closure algorithm, the result shows that F-value is the largest and the classification results is best when λ=0.993. This time, the weighted F- value is 4.898, unweighted F- value is 2.957, that shows the weighted gap between class are more obvious that unweighted one, that is, the accuracy of the clustering algorithm is significantly higher than unweighted fuzzy clustering algorithm. 【Conclusion】 Tests show that the clustering algorithm’s accurate rate is higher than the unweighted fuzzy clustering algorithm.
Keywords:space fuzzy clustering algorithm  precision agriculture  evaluation of soil fertility  attribute weights
本文献已被 万方数据 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号