首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase
Authors:Sven Schubert  Feng Yan
Abstract:The increase of rhizosphere pH in the course of nitrate nutrition results from H+ consumption in the external medium during uptake of NO3? in a H+ co-transport and from internal OH? production during nitrate reduction. Synthesis of organic acids for NH4+ assimilation as well as strong partial depolarization of membrane potential with NH4+ uptake are the important reasons for rhizosphere acidification during ammonium nutrition. Despite differences in proton balance depending on N form, cytoplasmic pH changes are small due to physico-chemical buffering, biochemical pH regulation, H+ inclusion in vacuoles, and H+ release into the rhizosphere. Because of the large capacity for proton excretion the plasmalemma H+ ATPase of root cells plays an essential role during ammonium nutrition. An increase of the kinetic parameter Vmax after ammonium nutrition relative to nitrate nutrition suggests that the capacity of H+ release may be adjusted to the particular requirements of ammonium nutrition. Moreover, H+ ATPase is adjusted not only quantitatively but also qualitatively. The increase of the kinetic parameter km as well as the capability of the plasmalemma vesicles in vitro to establish a steeper pH gradient favours the supposition that H+ ATPase isoforms are formed which allow H+ release into the rhizosphere under conditions of low pH or poor H+ buffering of the soil. In this respect species differences exist, e.g. between maize (efficient adaptation) and faba bean (poor adaptation).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号