首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil‐aggregate formation as influenced by clay content and organic‐matter amendment
Authors:Stephen Wagner  Stephen R Cattle  Thomas Scholten
Institution:1. Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil‐Wolff‐Str. 27, 70599 Stuttgart, Germany;2. Faculty of Agriculture, Food & Natural Resources, The University of Sydney, NSW 2006, Australia;3. Institute of Geography, Chair of Physical Geography, Eberhard‐Karls‐University Tübingen, Rümelinstra?e 19–23, 72070 Tübingen, Germany
Abstract:Naturally occurring wetting‐and‐drying cycles often enhance aggregation and give rise to a stable soil structure. In comparatively dry regions, such as large areas of Australia, organic‐matter (OM) contents in topsoils of arable land are usually small. Therefore, the effects of wetting and drying are almost solely reliant on the clay content. To investigate the relations between wetting‐and‐drying cycles, aggregation, clay content, and OM in the Australian environment, an experiment was set up to determine the relative influence of both clay content (23%, 31%, 34%, and 38%) and OM amendments of barley straw (equivalent to 3.1 t ha–1, 6.2 t ha–1, and 12.4 t ha–1) on the development of water‐stable aggregates in agricultural soil. The aggregate stability of each of the sixteen composite soils was determined after one, three, and six wet/dry cycles and subsequent fast and slow prewetting and was then compared to the aggregate stabilities of all other composite soils. While a single wet/dry cycle initiated soil structural evolution in all composite soils, enhancing macroaggregation, the incorporation of barley straw was most effective for the development of water‐stable aggregates in those soils with 34% and 38% clay. Repeated wetting‐and‐drying events revealed that soil aggregation is primarily based on the clay content of the soil, but that large straw additions also tend to enhance soil aggregation. Relative to untreated soil, straw additions equivalent to 3.1 t ha–1 and 12.4 t ha–1 increased soil aggregation by about 100% and 250%, respectively, after three wet/dry cycles and fast prewetting, but were of less influence with subsequent wet/dry cycles. Straw additions were even more effective in aggregating soil when combined with slow prewetting; after three wet/dry cycles, the mean weight diameters of aggregates were increased by 70% and 140% with the same OM additions and by 160% and 290% after six wet/dry cycles, compared to samples without organic amendments. We suggest that in arable soils poor in OM and with a field texture grade of clay loam or finer, the addition of straw, which is often available from preceding crops, may be useful for improving aggregation. For a satisfactory degree of aggregate stability and an improved soil structural form, we found that straw additions of at least 6.2 t ha–1 were required. However, rapid wetting of straw‐amended soil will disrupt newly formed aggregates, and straw has only a limited ability to sustain structural improvement.
Keywords:clay  barley straw  wet/dry cycles  soil aggregation  aggregate stability  agricultural management practices
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号