首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度形态学滤波的高分辨率遥感影像分割
引用本文:岳安志,杨建宇,张 超,朱德海,郧文聚. 基于多尺度形态学滤波的高分辨率遥感影像分割[J]. 农业工程学报, 2013, 29(25): 89-95
作者姓名:岳安志  杨建宇  张 超  朱德海  郧文聚
作者单位:1. 中国农业大学信息与电气工程学院,北京 100083; 2. 中国科学院遥感应用研究所,北京 100101;1. 中国农业大学信息与电气工程学院,北京 100083;1. 中国农业大学信息与电气工程学院,北京 100083;1. 中国农业大学信息与电气工程学院,北京 100083;3. 国土资源部土地整治中心,北京 100035
基金项目:国家自然科学基金面上项目(41171337);国土资源高分应用示范系统先期攻关项目子课题“高分数据土地利用要素快速提取技术”(E0202/1112/0104)共同资助
摘    要:
针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像“过分割”和“欠分割”问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。

关 键 词:影像分割,滤波,形态学,高空间分辨率遥感影像,多尺度
收稿时间:2012-05-21
修稿时间:2013-01-11

Multi-scale morphological filter for image segmentation of very high resolution satellite imagery
Yue Anzhi,Yang Jianyu,Zhang Chao,Zhu Dehai and Yun Wenju. Multi-scale morphological filter for image segmentation of very high resolution satellite imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(25): 89-95
Authors:Yue Anzhi  Yang Jianyu  Zhang Chao  Zhu Dehai  Yun Wenju
Abstract:
The morphological filters can suppress impulse noise or small image components/structures while preserving very important geometrical features such as edges. So, the morphological filters have been widely used in image preprocessing to remove the image noises and noise reduction is critical step for image segmentation. Morphological filters analyze the geometrical structure of image by locally comparing it with a predefined elementary shape called a structure element. Different scale image edges are detected by using several typical structure elements. Large amounts of experimental results demonstrate that the size of structure element have much dependence with image background. Therefore, many studies devote to the adaptive optimization of structure elements of morphological filters. However, the structure element of the same scale is traditionally adopted to establish a filter and remove noise from very high resolution satellite images prior to image segmentation. This method ignores the problem of inconsistencies between different land use types in the noise scale. In this paper, for the complicated background satellite imagery, a multi-scale morphological filtering method, which takes full advantage of the merits of large and small structure element by weighted strategy and combines them with the filtering results of multi-scale structure elements, is proposed based on morphological opening- and closing-reconstruction operations. To evaluate the multi-scale morphological filter for the image segmentation, three filtering approaches and segmentation accuracy assessment results are compared in this study. Qualitative and quantitative experimental results show that the proposed method can effectively solve over-segmentation and under-segmentation problem that result from improper scale of structure element. Compared with accuracy assessments of single scale and multi-scale morphological filters, the multi-scale morphological filter segmentation obtained higher accuracy than single scale filter segmentation, and is suitable for removing the multi-scale noise from very high resolution satellite images.
Keywords:image segmentation   filters   mathematical morphology   very high resolution satellite imagery   multi-scale
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号