首页 | 本学科首页   官方微博 | 高级检索  
     

二阶变系数常微分方程Neumann边值问题的正解
引用本文:梁盛泉,杨和. 二阶变系数常微分方程Neumann边值问题的正解[J]. 甘肃农业大学学报, 2010, 45(2)
作者姓名:梁盛泉  杨和
作者单位:1. 甘肃畜牧工程职业技术学院,甘肃,武威,733006
2. 西北师范大学数学与信息科学学院,甘肃,兰州,730070
摘    要:
利用锥上的不动点指数理论,获得了二阶变系数常微分方程-u'(t)+a(t)u(t)=f(t,u(t)),t∈[0,1]在Neumann边界条件下至少1个正解的存在性定理,及至少n(n为任意自然数)个正解的存在性定理.

关 键 词:Neumann边值问题  正解  奇异  不动点指数

Positive solution for Neumann boundary value problem of second-order various coefficient ordinary differential equation
LIANG Sheng-quan,YANG He. Positive solution for Neumann boundary value problem of second-order various coefficient ordinary differential equation[J]. Journal of Gansu Agricultural University, 2010, 45(2)
Authors:LIANG Sheng-quan  YANG He
Affiliation:1.Gansu Polytechnic College of Animal Husbandry & Engineering;Wuwei 733006;China;2.College of Mathematics and Information Science;Northwest Normal University;Lanzhou 730070;China
Abstract:
Using the fixed-point index theory in cones,some existence theorem of at least one positive solution and existence theorem of at least n(any natural number) positive solutions with Neumann boundary condition of the second-order various coefficient ordinary differential equation-u'(t)+a(t)u(t)=f(t,u(t)),t∈ were obtained in this paper.
Keywords:Neumann boundary value problem  positive solution  singular  fixed-point index  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号