首页 | 本学科首页   官方微博 | 高级检索  
     


Responses of nematode‐community structure in turfgrass soil to microbial filtrates from municipal–solid waste compost
Authors:Shulan Zhao  Tian Cheng  Lian Duo
Affiliation:Tianjin Normal University, College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin 300387, China
Abstract:Actinomycetes, Bacillus subtilis, and Bacillus thuringiensis were isolated from municipal–solid waste (MSW) compost, and different microbial liquid filtrates (MLF) were prepared. Sterile culture media with no microbes were used as their controls. The effects of MLF on soil nematode communities were examined in pot‐grown Festuca arundinacea Schreb. Fifteen genera of nematodes in background soil were identified, of which Helicotylenchus and Rotylenchus were dominant. The inoculation of MLF strongly affected the abundance and community structure of soil nematodes. Compared with their controls, lower total nematode numbers following MLF incorporation were found. Actinomycetes inoculation changed community structure of soil nematodes, transforming the dominant genera from Helicotylenchus and Rotylenchus into Cephalobus, Chiloplacus, and Aphelenchus. Actinomycetes incorporation resulted in a significant decrease of plant‐parasitic nematodes relative to control pots. Only plant‐parasitic and omnivorous‐predatory nematodes were found in treatments following B. subtilis inoculation, and Helicotylenchus, Rotylenchus were dominant genera with relative abundance of 76.2% and 14.3%, respectively. Although the dominant genera were still Helicotylenchus and Rotylenchus, B. thuringiensis inoculation led to a marked decrease in populations of plant‐parasitic nematodes and an increase in populations of fungivorous and bacterivorous nematodes relative to control. Shannon's diversity index (H′), evenness index (J′), richness index (SR), and Wasilewska index (WI) in pots treated with actinomycetes and B. thuringiensis filtrates were significantly higher than those of their controls, whereas significant lower dominance index (λ) in actinomycetes and B. thuringiensis treatments was observed than their controls. Plant growth was improved in the treatments inoculated with three microbes. The findings highlight that actinomycetes can most effectively suppress plant‐parasitic nematodes, increase community diversity, evenness, and richness, thus improving soil environment for turf growth.
Keywords:microbial liquid filtrate  soil nematode  trophic group  turfgrass  community indices
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号