首页 | 本学科首页   官方微博 | 高级检索  
     


Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in karst area,Southwest China
Authors:Bin Fang  Jian Zhang  Yuqing Li  Like Zhang  Jianzhong Cheng
Affiliation:1. Research and Development Center, Tianjin Capital Environmental Protection Group Company Limited, Tianjin, China;2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China;3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
Abstract:
Understanding and improving environmental quality by reducing soil nutrient leaching losses, sequestering carbon (C), reducing greenhouse gas (GHG) emissions, and enhancing crop productivity in highly weathered or degraded soils have always been the goals of agroecosystem researchers and producers. Biochar production and soil incorporation strategies have been recently proposed to help attain these goals. However, the effect of such approaches on soil GHG fluxes is highly uncertain and needs to be further assessed before biochar can be used on a large scale. In addition, the duration of these GHG reductions is not known and is of pivotal importance for the inclusion of biochar in climate abatement strategies. In a field trial cultivated with Chinese cabbage (Brassica campestris ssp. pekinensis) and radish (Daucus carota L. var. Sativa Hoffm), rapeseed (Brassica campestris L.) and maize (Zea mays L.) straw-derived biochar was added to the soil at rates of 0, 26, 64 and 128 t ha?1, in the whole growing season (October 2011–March 2012) to monitor the effect of treatments on soil GHG production/consumption and soil quality 16 months after biochar addition. The results showed that biochar amendment increased soil pH, nitrate nitrogen content, available phosphorus content and soil water content, but decreased soil bulk density. In biochar-treated plots, soil carbon dioxide (CO2) fluxes were from 20.1 to 87.0% higher than in the control. Soil methane (CH4) uptakes were increased significantly, by 33.2 and 80.1%, between the biochar amendment at the rate of 64 and 128 t ha?1 and the control. Soil nitrous oxide (N2O) fluxes showed no significant difference between biochar amendment and the control. Overall only the CH4 uptake-promoting effect continued into the long term, 16 months after biochar incorporation. This study demonstrates that the beneficial effects of biochar addition might first come through soil quality improvement and carbon sequestration, rather than through effects on the repression of soil C mineralization or the nitrogen cycle.
Keywords:Biochar  greenhouse gas fluxes  carbon sequestration  climate change mitigation  soil amendment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号