首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil chemical and microbiological properties in hay production systems: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate
Authors:Kannan Iyyemperumal  Jr" target="_blank">James GreenJr  Daniel W Israel  Noah N Ranells  Wei Shi
Institution:(1) Soil Science, North Carolina State University, Raleigh, NC 27695, USA;(2) Crop Science, North Carolina State University, Raleigh, NC 27695, USA
Abstract:This study characterized soil chemical and microbiological properties in hay production systems that received from 0 to 600 kg plant-available N (PAN) ha−1 year−1 from either swine lagoon effluent (SLE) or ammonium nitrate (AN) from 1999 to 2001. The forage systems contained plots planted with bermudagrass (Cynodon dactylon L.) or endophyte-free tall fescue (Festuca arundinaceae Schreb.). In March 2004, the plots were sampled for measurements of a suite of soil chemical and microbiological properties. Nitrogen fertilization rates were significantly correlated with soil pH and K2SO4-extractable soil C but not with total soil C, soil C/N ratio, electrical conductivity, or Mehlich-3-extractable nutrients. Soil supplied with SLE had significantly lower Mehlich-3-extractable nutrients than the soil supplied with AN. Two indicators of soil N-supplying capacity (potentially mineralizable N and amino sugar N) varied with plant species and the type of N fertilizer. However, they generally peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Soil microbial biomass C also peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Nitrification potential was significantly higher in soil supplied with AN than in the unfertilized control but was similar between SLE-fertilized and unfertilized soils. Our results indicated that an application rate as high as 600 kg PAN ha−1 year−1 did not benefit soil microbial biomass, microbial activity, and N transformation processes in these forage systems.
Keywords:Microbial biomass  C and N mineralization  Amino sugar N  Forage  Swine lagoon effluent
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号