摘 要: | 针对复杂环境下移动机器人路径规划困难的问题,提出了一种将全局路径规划蚁群算法与局部路径规划人工势场法相融合的混合型算法。首先,采用多因素启发函数和新的蚂蚁行进机制来解决传统蚁群算法路径质量差且易陷入对角障碍的问题;其次,针对传统蚁群算法收敛速度慢的情况,设计了自适应挥发系数和动态权重系数;接着,通过引入虚拟目标点、相对距离和安全距离的概念,解决了传统人工势场法易陷入局部极小值、目标不可达以及过度避障的问题;最后,将改进蚁群算法规划路径的转折点作为局部子目标点来调用改进的人工势场法进行二次规划。仿真表明改进蚁群算法较传统算法以及其他算法在路径长度方面优化了9.9%和2.0%,在路径转折次数方面优化了81.8%和63.6%,在收敛速度方面优化了94.2%和63.6%;改进人工势场法有效解决了自身问题;而以二者为基础的混合型算法则充分地结合了二者的优势,在复杂的静态和动态环境中具有极高的环境适应性和路径规划效率。
|