首页 | 本学科首页   官方微博 | 高级检索  
     检索      

生物质炭特性及施用管理措施对作物产量影响的整合分析
引用本文:肖婧,徐虎,蔡岸冬,黄敏,张琪,孙楠,张文菊,徐明岗.生物质炭特性及施用管理措施对作物产量影响的整合分析[J].中国农业科学,2017,50(10):1827-1837.
作者姓名:肖婧  徐虎  蔡岸冬  黄敏  张琪  孙楠  张文菊  徐明岗
基金项目:国家“十二五”国家科技支撑计划(2014BAD14B02,2014BAD14B03)、国家自然科学基金(41101210)、上海市绿化和市容管理局项目(G160202)
摘    要:【目的】大量研究表明农田施用具有特殊理化性质的生物质炭对作物产量具有显著影响,采用大样本统计方法量化生物质炭自身特性及施用管理措施对作物产量的影响程度。【方法】通过收集全球范围内公开发表的97篇生物质炭施用与土壤改良、作物生长有关的相对独立研究,共获得匹配数据819组。运用数据整合分析方法(Meta-analysis)量化生物质炭自身特性(原料、制备温度、C/N、pH)在人为施用管理(施用量与施用时长)、土壤属性(质地和酸碱度)等条件下对作物产量变化的影响。【结果】统计分析表明,与不施用生物质炭相比,施用生物质炭具有显著的增产效应,作物平均增产15.0%。生物质炭施用的增产效果在不同作物上存在显著差异,经济作物平均增产25.3%,显著高于粮食作物(10.0%)。生物质炭自身特性对作物产量影响显著,当制备温度600℃、pH7、C/N值介于20—300时,均具有显著的增产效果,增产范围为9.2%—26.6%,且增产幅度随着制备温度和其自身C/N值的增加而下降。对于不同质地和酸碱度的土壤而言,施用生物质炭的增产效果表现为黏质土壤砂质土壤壤质土壤;施用于酸性土壤可增产29.2%,分别是中性及碱性土壤的7.9和2.5倍。人为管理条件下,当生物质炭施用量10.0 t·hm~(-2)时,可显著提高作物产量,达到18.0%,施用量80.0 t·hm~(-2)后增产效果不显著。施用生物质炭的增产效果随着施用时间的增加而呈下降趋势,施用半年至两年内可增产13.4%—17.5%,超过两年,增产效应降至9.6%。【结论】生物质炭的增产效应随着生物质炭的属性、施用量和施用时长的不同有所差异。根据作物类型与土壤属性选择适宜特性的生物质炭,适时酌情间断性施用,不仅可以达到持续增产的目的,也降低成本,提高经济效益,可以作为现代可持续农业管理措施的选择。

关 键 词:生物质炭  作物产量  增产效应  土壤质地  管理措施  施用量  施用时长  整合分析
收稿时间:2016-10-20

A Meta-Analysis of Effects of Biochar Properties and Management Practices on Crop Yield
XIAO Jing,XU Hu,CAI AnDong,HUANG Min,ZHANG Qi,SUN Nan,ZHANG WenJu,XU MingGang.A Meta-Analysis of Effects of Biochar Properties and Management Practices on Crop Yield[J].Scientia Agricultura Sinica,2017,50(10):1827-1837.
Authors:XIAO Jing  XU Hu  CAI AnDong  HUANG Min  ZHANG Qi  SUN Nan  ZHANG WenJu  XU MingGang
Institution:1.School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070;2.Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081;3.Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232
Abstract:【Objective】A large number of studies have indicated that application of biochar in cropland has significant effects on crop yield due to its unique physical and chemical properties. It is of important significance to quantify the effects of management practices and biochar quality on crop yield by statistical analysis of large sample numbers.【Method】By collecting global relevant published literatures, 97 relative independent studies with 819 paired datasets on biochar’s effects of crop growth were selected. A meta-analysis was undertaken to quantify the effect of biochar characteristics (e.g., raw material, pyrolysis temperature, C/N, pH etc.) and artificial application management practices (e.g., application amount and duration), soil properties (soil texture and pH) on the crop yield improvement.【Result】Results showed that biochar could improve crop yield significantly by 15.0% in average compared with the control. As for crop types, the effect of biochar on crop yield was significantly different: The yield increase of cash crops (25.3%) was significantly higher than that of grain crops (10.0%). The characteristics of biochar had a significant impact on crop yield. Biochar produced with pyrolysis temperature lower than 600℃, pH over 7, and C/N value between 20-300, obtained significant increase in crop yield ranging from 9.2% to 26.6%. Moreover, the improved percentage of crop yield decreased with increase in pyrolysis temperature and biochar C/N. As for different soil textures and acidities, the order of yield-improving effect was clay soil > sandy soil > loamy soil. The yield-improving effect of biochar application for acid soil (29.2%) was 7.9 and 2.5 times of that for neutral and alkaline soil. Under the condition of management practices, biochar application increased crop yield significantly (by 18.0%) at rates less than 10.0 t·hm-2. However, there was no significant effect on crop yield when the application rate was more than 80.0 t·hm-2. The response ratio of biochar application on crop yield decreased with increase in the application duration. Six months to two years after biochar application increased crop yield by about 13.4%-17.5%, whereas after more than 2 years, the response ratio reduced to 9.6%.【Conclusion】The effect of biochar on crop yield varied according to variation in biochar quality and application rate and duration. Choosing biochar in specific quality for application can not only achieve sustainable improvement in crop production, but also minimalize the cost and improve economic efficiency according to crop types and soil texture. This result would provide an option for the development of sustainable agricultural management practices.
Keywords:biochar  crop yield  improving effect  soil texture  management  application rate  application duration  meta-analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号