首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLO的玉米幼苗株数获取方法
引用本文:张宏鸣,付振宇,韩文霆,阳光,牛当当,周新宇. 基于改进YOLO的玉米幼苗株数获取方法[J]. 农业机械学报, 2021, 52(4): 221-229
作者姓名:张宏鸣  付振宇  韩文霆  阳光  牛当当  周新宇
作者单位:西北农林科技大学信息工程学院,陕西杨凌712100;西北农林科技大学机械与电子工程学院,陕西杨凌712100;赤峰市生态环境局克什克腾旗分局,赤峰025350
基金项目:国家重点研发计划项目(2020YFD1100601、2017YFC0403203)和国家自然科学基金项目(41771315)
摘    要:为快速准确获取玉米幼苗株数、评估播种质量、进行查缺补苗等管理,对YOLO算法进行改进,提出了一种基于特征增强机制的幼苗获取检测模型(FE-YOLO),实现了对玉米幼苗株数的快速获取.该方法根据玉米幼苗目标尺寸和空间纹理特征,构建了基于动态激活的轻量特征提取网络,融合了多感受野和空间注意力机制.实验表明:FE-YOLO模...

关 键 词:玉米  幼苗检测  株数  YOLO算法  特征增强机制
收稿时间:2020-12-24

Detection Method of Maize Seedlings Number Based on Improved YOLO
ZHANG Hongming,FU Zhenyu,HAN Wenting,YANG Guang,NIU Dangdang,ZHOU Xinyu. Detection Method of Maize Seedlings Number Based on Improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 221-229
Authors:ZHANG Hongming  FU Zhenyu  HAN Wenting  YANG Guang  NIU Dangdang  ZHOU Xinyu
Affiliation:Northwest A&F University; Keshiketengqi Branch of Chifeng Ecological Environment Bureau
Abstract:The number of maize seedlings is the essential information for sowing quality assessment. It is important to obtain the number of maize seedlings quickly and precisely for investigation and filling the gaps with seedlings. To improve the real time and precision of the acquisition of maize seedling number, the YOLO model (FE-YOLO) was improved, and the detection and acquisition of maize seedling number were realized. Firstly, dynamic ReLU was used to improve the bottleneck layer of MobileNet and the feature extraction performance of MobileNet was increased. Then, according to the target size and spatial texture characteristics of maize seedlings, the multi-receptive field fusion and spatial attention mechanism were used to enhance the feature expression. The experimental results showed that the FE-YOLO model enhanced the spatial texture characteristics of the seedlings, reduced the complexity of the model, made the mAP and recall rates reach 87.22% and 91.54%, respectively, and the floating-point operations per second and detection consumption time were only 7.91% and 33.76% of YOLO v3. FE-YOLO can detect the maize seedlings in the UAV orthoimage, and then Equation (13) was used to estimate the planting density. FE-YOLO had low complexity and high recognition accuracy, which can provide support for maize seedling management.
Keywords:maize   seedling detection   plant number   YOLO algorithm   feature enhancement mechanism
本文献已被 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号