首页 | 本学科首页   官方微博 | 高级检索  
     

关于Hermite与次Hermite二次矩阵方程解的研究
引用本文:杨忠鹏,;严益水,;陈清华. 关于Hermite与次Hermite二次矩阵方程解的研究[J]. 吉林林学院学报, 2009, 0(3): 193-197
作者姓名:杨忠鹏,  严益水,  陈清华
作者单位:[1]莆田学院数学系,福建莆田351100; [2]福建师范大学数学与计算机科学学院,福建福州350007
基金项目:福建省自然科学基金项目(Z0511051);福建省教育厅科技项目(JA08196);莆田学院教学研究项目(JG200820).
摘    要:以Hermite矩阵、斜Hermite矩阵与次Hermite矩阵、次斜Hermite矩阵的相近关系为基础,证明了从Hermite二次矩阵方程的矩阵解出发,可得到次Hermite二次矩阵方程的解的相应结果.应用这种方法,不仅给出了可概括这两类矩阵方程解的已有结论的充要条件,而且指出已有文献得到的是不以-1为特征值的矩阵解,因此,这些矩阵方程的“一般解”的研究还没有结束.

关 键 词:Hermite矩阵  次Hermite矩阵  可逆矩阵  二次矩阵方程  矩阵解

On the Solutions of Quadratic Matrix Equation of Hermite and Sub-Hermite Matrix
Affiliation:YANG Zhong-peng,YAN Yi-shui, CHEN Qing-hua( 1. Mathematics Department of Putian University, Putian 351100, China ; 2. School of Mathematics & Computer Science, Fujian Normal University, Fuzhou 350007, China)
Abstract:Based on the connection relationships among Hermite matrix, skew-Hermite matrix and sub-Hermite matrix,sub-skew-Hermite matrix, the corresponding conclusions of quadratic sub-hermite matrix equations have been obtained by the matrix solution of quadratic Hermite matrix equations. Used method like this, not only the necessary and sufficient conditions which can summary the present conclusions of solutions to these two classes matrix equations are given, but also the matrix solution of present literatures are pointed out that their eigenvalues are not -1. Therefore, the general solutions to these matrix equations are not the end.
Keywords:Hermite matrix  Sub-Hermite matrix  Invertible matrix  Quadratic matrix equation  Matrix solution
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号