首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gradual forest edges can mitigate edge effects on throughfall deposition if their size and shape are well considered
Authors:Karen Wuyts  An De Schrijver  Frederic Vermeiren  Kris Verheyen
Institution:1. Laboratory of Forestry, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode-Melle, Belgium;2. Research Institute for Nature and Forest (INBO), Gaverstraat 4, B-9500 Geraardsbergen, Belgium
Abstract:For the protection and promotion of biodiversity in forest edges and interiors, forest edge management practices are put forward like the creation of gradual forest edges (i.e., edges with a gradual increase of vegetation height from open area to forest, e.g., by means of a fringe, a belt, and a mantle). In this study, we tested the mitigating effect of gradual forest edges on the atmospheric deposition of inorganic nitrogen (N) and the potentially acidifying pollutants SO42−, NO3, and NH4+ (N + S). We conducted field experiments at three exposed forest edges in Flanders and the Netherlands and compared throughfall deposition at steep edges (i.e., edges with an abrupt transition from open area to forest) and at adjacent gradual edges. Along transects perpendicular to the edges, during three months in both winter and summer, throughfall deposition of Cl, SO42−, NO3, and NH4+ was monitored in the forest between 0 and 64 m from the edges and in the gradual edge vegetation. At the smoothest and best fitting gradual edge, the extra N + S throughfall deposition the forest received due to edge effects was lower than at the adjacent steep edge, with on average 80 and 100% in winter and summer, respectively. This was due to a halving of the depth of edge influence and an almost full reduction of the magnitude of edge influence. This decrease in throughfall deposition in the forest was not compensated by the additional throughfall deposition on the gradual edge vegetation itself, resulting in a final decrease in throughfall deposition in the forest edge by 60% in winter and 74% in summer. While this result confirms that gradual edges can mitigate edge effects on atmospheric deposition, the results of the other sites indicate the importance of size and shape of the gradual edge vegetation in mitigating edge effects on deposition: due to insufficient height (‘size’) or inadequate shape of the gradual edge vegetation, only small or insignificant decreases in throughfall deposition were observed. Hence, for mitigating edge effects on N + S and N deposition, our results support the recommendation of creating gradual edges at forests with poorly developed, abrupt edges, but it stresses the importance of a thorough consideration of the shape and size of the gradual edge vegetation in the design and management of gradual forest edges.
Keywords:Throughfall deposition  Ecotone  Edge effect  Gradual forest edge  Edge shape  Nitrogen
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号