首页 | 本学科首页   官方微博 | 高级检索  
     

矩阵方程AXB=C的最小二乘解的定秩研究
引用本文:孟纯军,李桃珍. 矩阵方程AXB=C的最小二乘解的定秩研究[J]. 湖南农业大学学报(自然科学版), 2013, 40(7): 92-94
作者姓名:孟纯军  李桃珍
作者单位:(湖南大学 数学与计量经济学院,湖南 长沙410082)
摘    要:研究了矩阵方程AXB=C最小二乘解的秩的范围,利用矩阵的奇异值分解以及Frobenius范数的特征,得到了秩约束下最小二乘解的表达式,并得到了最大秩和最小秩最小二乘解.

关 键 词:最优控制  最小二乘解  秩约束  奇异值分解  Frobenius范数

On the Rank Range of the Least-squares Solutions of the Matrix Equation AXB=C
MENG Chun-jun,LI Tao-zhen. On the Rank Range of the Least-squares Solutions of the Matrix Equation AXB=C[J]. Journal of Hunan Agricultural University, 2013, 40(7): 92-94
Authors:MENG Chun-jun  LI Tao-zhen
Affiliation:(College of Mathematics and Econometrics, Hunan Univ, Changsha, Hunan410082, China)
Abstract:This paper, we considered the rank range of the least-squares solutions of matrix equation AXB=C. By applying the singular value decomposition of matrix and the properties of Frobenius matrix norm, we have obtained the range of the rank and the least-squares solution expression of under rank constrained. Finally, we have provided the expressions of the least-squares solutions with maximal and minimum rank respectively.
Keywords:optimal control   least-squares solutions   rank constrained   SVD decomposition   Frobenius norm
点击此处可从《湖南农业大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南农业大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号