首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses
Authors:Lewinsohn Efraim  Sitrit Yaron  Bar Einat  Azulay Yaniv  Meir Ayala  Zamir Dani  Tadmor Yaakov
Institution:Institute of Field and Vegetable Crops, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, Israel. twefraim@agri.gov.il
Abstract:Tomato near-isogenic lines differing in fruit carotenogenesis genes accumulated different aroma volatiles, in a strikingly similar fashion as compared to watermelon cultivars differing in fruit color. The major volatile norisoprenoids present in lycopene-containing tomatoes and watermelons were noncyclic, such as geranial, neral, 6-methyl-5-hepten-2-one, 2,6-dimethylhept-5-1-al, 2,3-epoxygeranial, (E,E)-pseudoionone, geranyl acetone, and farnesyl acetone, seemingly derived from lycopene and other noncyclic tetraterpenoids. Beta-ionone, dihydroactinodiolide, and beta-cyclocitral were prominent in both tomato and watermelon fruits containing beta-carotene. Alpha-ionone was detected only in an orange-fleshed tomato mutant that accumulates delta-carotene. A yellow flesh (r) mutant tomato bearing a nonfunctional psy1 gene and the yellow-fleshed watermelon Early Moonbeam, almost devoid of carotenoid fruit pigments, also lacked norisoprenoid derivatives and geranial. This study provides evidence, based on comparative genetics, that carotenoid pigmentation patterns have profound effects on the norisoprene and monoterpene aroma volatile compositions of tomato and watermelon and that in these fruits geranial (trans-citral) is apparently derived from lycopene in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号