首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sulphate Mobilization and Pore Water Chemistry in Relation to Groundwater Hydrology and Summer Drought in two Conifer Swamps on the Canadian Shield
Authors:Devito  Kevin J  Hill  Alan R
Institution:1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9 (author for correspondence, fax
2. Department of Geography, York University, 4700 Keele St., North York, Ontario, Canada, M3J 1P3
Abstract:Variations in sulphate (SO4 2-) concentration of porewater and net SO4 2- mobilization were related to differences in water level fluctuations during wet and dry summers in two conifer swamps located in catchments which differed in till depth and seasonality of groundwater flow. Sulphate depletion at the surface and in 20 cm porewater coincided with anoxia and occurred mainly during the summer when water levels were near the peat surface and water flow rates were low in both catchments. There was an inverse relationship between net SO4 2- mobilization and water level elevation relative to the peat surface, explaining variation in SO4 2- dynamics between the swamps during summer drought periods. Aeration of peat to 40 cm and a large net SO4 2- mobilization (10–70 mg SO4 2- m-2 d-1) occurred during a dry summer in which the water level dropped to 60 cm below the surface in the swamp receiving ephemeral groundwater inputs from shallow tills within the catchment. This resulted in high SO4 2- concentrations in the surface water and porewater (30–50 mg L-1), and elevated SO4 2- concentrations remained through the fall and winter. In contrast, within the swamp located in the catchment with greater till depth (> 1 m), continuous groundwater inputs maintained surface saturation during the dry summer, and SO4 2- mobilization and concentrations of SO4 2- in the pore water during the following fall did not increase. Susceptibility to large water table drawdown and mobilization of accumulated SO4 2- is influenced by the occurrence of ephemeral vs. continuous groundwater inputs to valley swamps during dry summer periods in the Canadian Shield landscape. This study reveals that extrapolation of results of SO4 2- cycling from one wetland to another requires knowledge of the hydrogeology of the catchment in which the wetlands are located.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号