首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19
Authors:Munees AhemadMohammad Saghir Khan
Institution:Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India
Abstract:In this study, four technical grade insecticides, fipronil, pyriproxyfen, imidacloprid and thiamethoxam were applied at the recommended and the higher doses to investigate their effects on plant growth-promoting activities of phosphate-solubilizing Klebsiella sp. strain PS19, isolated from mustard rhizosphere. All tested insecticides displayed a concentration-dependent inhibition in plant growth promoting traits, like, inorganic phosphate solubilization, biosynthesis of phytohormones and siderophores, of rhizobacterial strain PS19. For example, the phosphate-solubilizing activity of Klebsiella sp. PS 19 was reduced maximally by 95%, at 3900 μg l−1 pyriproxyfen over control. At the recommended rate, the magnitude of toxicity of insecticides to plant growth promoting traits was less severe compared to the higher doses. The sequence of insecticide-toxicity expressed as percent decrease, determined at highest dose rate of each insecticide, over control was: pyriproxyfen (95) = imidacloprid (95) > thiamethoxam (94) > fipronil (85), for phosphate-solubilizing activity while for salicylic acid (SA) it was: thiamethoxam > pyriproxyfen = imidacloprid > fipronil. The impact of the highest dose rate of insecticides on 2,3-dihydroxybenzoic acid (DHBA) was almost equal to those observed for SA. Thiamethoxam decreased the indole acetic acid (IAA) synthesis maximally by 86% whereas fipronil had least toxicity and reduced it by 67% relative to the control. Among the experimental insecticides, pyriproxyfen at 3900 μg l−1 in general, had the greatest toxic effects for plant growth promoting activities of the test strain. The study inferred that insecticides affect the plant beneficial activities of rhizobacteria adversely. These findings are likely to add a new insight into the pest management practices.
Keywords:Klebsiella  Phosphate solubilization  Insecticide  Rhizosphere  Toxicity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号