首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Vertical distribution and bioavailability of 137Cs in organic and mineral soils
Authors:Sven Kruse‐Irmer  Luise Giani
Abstract:The vertical distribution and bioavailability of 137Cs in Histosols and mineral soils with different physicochemical properties from the southeast of Bavaria (Germany) more than ten years after the Chernobyl accident were the focus of this study. The vertical distribution of 137Cs was low in the investigated soils. About 85–98 % of the total 137Cs was located in the upper 10 cm of the mineral soils. Slightly higher 137Cs percentages were observed in deeper soil layers of the peat soils. Although the organic matter is assumed to enhance 137Cs mobility in soils, 137Cs was also located in the upper 10 cm of the peat soils (73–85 %). The highest 137Cs‐activities were found in the humus layers of forest soils, where 45–93 % of the total 137Cs soil inventories were observed. To determine the bioavailability of radiocesium, the soil‐to‐plant transfer of 137Cs and additionally added 134Cs was investigated under controlled conditions. The results revealed that the 134+137Cs soil‐to‐plant transfer factors as well as the percentages of NH4‐exchangeable 134+137Cs were much higher for the peat soils and humus layers than for the mineral soils. Nevertheless, the migration of 137Cs from the humus layers to the underlying soils was low. Considering the high bioavailability and low migration of radiocesium in the humus layers, it is suggested that radiocesium is involved in a shortcut element cycle in the system humus layer‐plant uptake‐litter. Furthermore, the organic matter has to be taken into account for radiocesium immobilization.
Keywords:radiocesium  bioavailability  humus layer  forest soils  soil‐to‐plant transfer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号