首页 | 本学科首页   官方微博 | 高级检索  
     

梨可溶性固形物含量NIR与变量筛选无损检测
作者姓名:朱伟兴  江辉  陈全胜  郭建光
基金项目:国家自然科学基金资助项目,江苏省自然科学基金资助项目
摘    要:为提高利用近红外光谱技术快速检测梨可溶性固形物含量的精度和稳定性,结合区间偏最小二乘和遗传算法(iPLS-GA)来筛选校正模型中的特征光谱区和变量,通过交互验证法确定模型中的主成分因子数和筛选的变量,并以预测均方根误差(RMSEP)和相关系数(Rp)作为模型评价标准。试验结果显示:iPLS-GA最优模型包含5个光谱区、50个变量和10个主成分因子。最佳预测模型相关系数(Rp)和RMSEP 分别为0.9398和0.3250,研究结果表明近红外光谱结合iPLS-GA算法可以准确、无损检测梨的可溶性固形物含量。

关 键 词:  可溶性固形物含量  近红外光谱  间隔偏最小二乘  遗传算法
本文献已被 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号