首页 | 本学科首页   官方微博 | 高级检索  
     检索      


INTERACTIONS BETWEEN ABOVE AND BELOW GROUND PLANT STRUCTURES: MECHANISMS AND ECOSYSTEM SERVICES
Authors:John A RAVEN
Institution:1. Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK2. Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, Ultimo NSW 2007, Australia3. School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
Abstract: ● Aboveground to belowground energy transfer. ● Importance of symplasmic nature of sieve tubes. ● Hydraulic, electrical and chemical energy transfer. ● Decreased soil organic C storage over 8000 years. Interactions between above and below ground parts of plants can be considered under the (overlapping) categories of energy, material and information. Solar energy powers photosynthesis and transpiration by above ground structures, and drives most water uptake through roots and supplies energy as organic matter to below ground parts, including diazotrophic symbionts and mycorrhizas. Material transfer occurs as water and dissolved soil-derived elements transport up the xylem, and a small fraction of water moving up the xylem with dissolved organic carbon and other solutes down the phloem. The cytosolic nature of sieve tubes accounts for at least some of the cycling of K, Mg and P down the phloem. NO3 assimilation of above ground parts requires organic N transport down phloem with, in some cases, organic anions related to shoot acid-base regulation. Long-distance information transfer is related development, biotic and abiotic damage, and above and below ground resource excess and limitation. Information transfer can involve hydraulic, electrical and chemical signaling, with their varying speeds of transmission and information content. Interaction of above and below ground plant parts is an important component of the ecosystem service of storing atmospheric CO2 as organic C in soil, a process that has decreased since the origin of agriculture.
Keywords:aerenchyma  carbon accumulation  hormones  phloem  xylem  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号