首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波分析的年最大径流预测方
引用本文:刘晓安. 基于小波分析的年最大径流预测方[J]. 中国农村水利水电, 2006, 0(7): 10-11
作者姓名:刘晓安
作者单位:华中科技大学水电与数字化工程学院,武汉,430074
摘    要:径流序列可以看成是各种不同成分线性叠加构成的时间序列。利用小波变换良好的局部化时频分析能力,将年最大径流序列进行分解,使其趋势项、周期项和随机项得以分离。各子序列分别代表不同的时间尺度,反映了各种物理因素对径流过程的影响。然后根据各子序列的特性分别建立幂函数、周期函数或ARMA模型并进行预测。最后将各子序列的预测值合成,得到年最大径流序列的预测值。对宜昌站1991年至2002年最大径流量的预测结果表明,该方法是切实可行的。并指出小波包变换在分析中、高频信息方面优于小波变换,有助于进一步提高预测的精度。

关 键 词:小波分析  时间序列分析  年最大径流预报
文章编号:1007-2284(2006)07-0010-02
收稿时间:2005-12-25
修稿时间:2005-12-25

A Method for Annual Maximum Runoff Forecast Based on Wavelet Analysis
LIU Xiao-an. A Method for Annual Maximum Runoff Forecast Based on Wavelet Analysis[J]. China Rural Water and Hydropower, 2006, 0(7): 10-11
Authors:LIU Xiao-an
Affiliation:College of Hydropower and Digitization Engineering, Huazhong University of Science and Technology, Wuhan City 430074, China
Abstract:Runoff series can be regarded as a linear overlapping of different components. In this paper, the perfect localized time and frequency analysis capacity of wavelet transform is made use to separate the items of tendency, period, and random through decomposition of annual maximum runoff series. Sub-series represents different scale of time to reflect the influences of different physical factors on runoff process. Power function, periodical function, and ARMA model are established according to the characteristics of sub-series. The calculated results of sub-series are added to forecast the annual maximum runoff series. Through forecast of annual maximum runoff 1991-2002 in Yichang Station, the results show that the method is practical and feasible; wavelet package transform is superior to wavelet transform for analysis of information of high and middle frequency.
Keywords:wavelet   time series analysis   annual maximum runoff forecast
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国农村水利水电》浏览原始摘要信息
点击此处可从《中国农村水利水电》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号