首页 | 本学科首页   官方微博 | 高级检索  
     

基于MODIS与TM时序插补的省域尺度玉米遥感估产
引用本文:顾晓鹤,何 馨,郭 伟,黄文江,燕荣江. 基于MODIS与TM时序插补的省域尺度玉米遥感估产[J]. 农业工程学报, 2010, 26(14): 53-58
作者姓名:顾晓鹤  何 馨  郭 伟  黄文江  燕荣江
作者单位:1. 国家农业信息化工程技术研究中心,北京 100097;1. 国家农业信息化工程技术研究中心,北京 100097;1. 国家农业信息化工程技术研究中心,北京 100097;1. 国家农业信息化工程技术研究中心,北京 100097;2. 浙江省永康市气象局,永康 321300
基金项目::北京市优秀人才计划(PYZZ090416001998);国家自然科学青年基金项目(41001199);国家科技支撑计划(2008BAJ08B03)
摘    要:
针对省域尺度作物估产中的TM影像时相不一致和覆盖能力不足的问题,以山东省2008年玉米产量为研究对象,在6景不同玉米物候期的TM影像和长时间序列的MODIS全覆盖影像的支持下,构建基于玉米生长过程的时序插补模型,将不同物候期的TM影像插补为玉米乳熟期的同期数据集,并通过地面实割实测样本数据,建立地面-TM、TM-MODIS的两阶段遥感估产模型,开展省域尺度玉米产量全覆盖遥感估测方法研究。结果表明,基于时序插补的省域尺度玉米遥感估产方法能充分发挥TM和MODIS影像的各自优势,有效地避免TM影像时相不同所造

关 键 词:遥感,估产,作物,玉米,MODIS,TM,省域尺度,时序插补
收稿时间:2010-01-23
修稿时间:2010-11-28

Maize yield estimation at province scale by interpolation of TM and MODIS time-series images
Gu Xiaohe,He Xin,Guo Wei,Huang Wenjiang and Yan Rongjiang. Maize yield estimation at province scale by interpolation of TM and MODIS time-series images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(14): 53-58
Authors:Gu Xiaohe  He Xin  Guo Wei  Huang Wenjiang  Yan Rongjiang
Abstract:
This study aims to overcome the shortage of the temporal variance and small coverage of TM images, which makes low accuracy for estimating the crop yield at province scale. The paper chose the maize yield in Shandong province in 2008 as the object of study. The data used in the paper mainly included six TM images with different phenophase of maize and the long time-series MODIS images with full coverage. The paper developed the time-series interpolating model based on the growth process of maize, which could interpolate the TM images with different phenophase into the dataset with the same milky maturity period of maize. Then through the in-situ measured samples of per unit area yield, the paper set up yield estimation models including ground-TM model and TM-MODIS model to obtain the full coverage yield information of maize at province scale. Results show that the method of yield estimation at province scale based on time-series interpolating model could make the most of the advantage of TM and MODIS data and avoid the regional disparity of NDVI derived from the temporal difference of TM images. The paper could reach high accuracy in the estimation of per unit area yield of maize in Shandong province. This will provide a new method to estimating crop yield at province scale.
Keywords:remote sensing   yield estimation   crops   maize   MODIS   TM   province scale   time-series interpolation
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号