摘 要: | 茎杆倒伏是苎麻三麻培育中最常见的灾害,传统的监测方法具有耗时耗力、不及时等局限性。提出了一种基于无人机航拍获取苎麻倒伏信息的方法,首先利用Pix4D Mapper软件生成苎麻的冠层正射影像和数字表面模型(digital surface model,DSM),基于正射影像提取苎麻光谱、纹理及形状特征,基于DSM提取苎麻株高指标,最后结合3种机器学习算法构建正常/倒伏苎麻分类模型。结果表明,基于DSM提取的株高信息可以有效代替大田实测株高,模型R2为0.899。倒伏和正常苎麻在光谱、纹理、形状及株高特征上具有差异。在3种机器学习算法中,支持向量机和决策树模型的性能最好,准确率达到99%,能够高效地识别苎麻倒伏地块。以上研究结果为准确、快速评估作物倒伏情况提供了技术支撑。
|