首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seasonal dynamics of soil water content in the typical vegetation and its response to precipitation in a semi-arid area of Chinese Loess Plateau
Authors:ZHOU Tairan
Institution:State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University,Lanzhou 730000,China;Gansu Provincial Field Scientific Observation and Research Station of Mountain Ecosystems,Lanzhou University,Lanzhou 730000,China
Abstract:Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area. To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content, we continuously monitored the seasonal dynamics in soil water content in four plots (natural grassland, Caragana korshinskii, Armeniaca sibirica and Pinus tabulaeformis) in Chinese Loess Plateau. The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth, showing obvious seasonal variations. Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland, and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm. Spring and autumn are the key seasons for replenishment of soil water by precipitation. Changes in soil water content are affected by precipitation, vegetation types, soil evaporation and other factors. The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area. Due to artificial vegetation plantation in this area, soil will face a water deficit crisis in the future.
Keywords:soil water content  vegetation type  precipitation  seasonal change  evaporation  
本文献已被 万方数据 等数据库收录!
点击此处可从《干旱区科学》浏览原始摘要信息
点击此处可从《干旱区科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号