首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络和随机游走模型的汇率预测
引用本文:洪嘉灏,李雄英,王斌会. 基于人工神经网络和随机游走模型的汇率预测[J]. 湖南农业大学学报(自然科学版), 2016, 0(1): 30-35
作者姓名:洪嘉灏  李雄英  王斌会
作者单位:(1.暨南大学 经济学院,广东 广州510632;2.暨南大学 管理学院, 广东 广州510632)
摘    要:由于金融数据具有随机性特征,使得建模和预测变得极其困难.提出一种组合预测方法,即假定任何金融时序数据由线性和非线性两部分组成,将其中线性部分的数据通过随机游走(RW)模型进行模拟,剩余的非线性残差部分由前馈神经网络(FANN)和诶尔曼神经网络(EANN)协同处理.从实证结果可知,该组合方法相比单独使用RW、FANN或EANN模型有更高的预测精度.

关 键 词:诶尔曼神经网络;人工神经网络;随机游走模型;组合预测;金融时间序列

Exchange Rate Forecast Based on Artificial Neural Network and Random Walk Model
HONG Jia-hao,LI Xiong-ying,WANG Bin-hui. Exchange Rate Forecast Based on Artificial Neural Network and Random Walk Model[J]. Journal of Hunan Agricultural University, 2016, 0(1): 30-35
Authors:HONG Jia-hao  LI Xiong-ying  WANG Bin-hui
Affiliation:(1. School of economics,Jinan University, Guangzhou, Guangdong516032, China;2. School of management, Jinan University, Guangzhou, Guangdong516032, China)
Abstract:The random characteristics of financial time series make the task of modeling and forecasting extremely difficult.In this paper, we proposed a combination methodology benefiting from the strengths of both RW and ANN models, which assumes that any financial time series consist of a linear part and a nonlinear part. The linear part of a financial dataset is processed through the RW model, and the remaining nonlinear residuals are processed using an ensemble of FANN and EANN models. The empirical results demonstrate that our combination method achieves reasonably better forecasting accuracies than each of RW, FANN and EANN models in isolation.
Keywords:EANN   artificial neural network  random walk model  combination forecast  financial time series
点击此处可从《湖南农业大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南农业大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号