首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Agroforestry in the management of sloping lands in Asia and the Pacific
Authors:E T Craswell  A Sajjapongse  D J B Howlett  A J Dowling
Institution:(1) International Board for Soil Research and Management, P.O. Box 9-109, Bangkhen, Bangkok, 10900, Thailand
Abstract:Steeply sloping lands are widespread in the tropics. An estimated 500 million people practice subsistence agriculture in these marginal areas. Continued population growth has led to the intensified cultivation of large areas of the sloping lands, exacerbating the problem of soil erosion. Although research shows that alley cropping and other contour agroforestry systems can stabilize the sloping lands, these systems have not been widely adopted by farmers. The Framework for Evaluating Sustainable Land Management (FESLM) has been tested in sloping land areas in the Philippines. Sustainable land management must be productive, stable, viable, and acceptable to farmers, while protecting soil and water resources. Farms on which contour hedgerow intercropping has been adopted meet the multifaceted requirements of FESLM, whereas the farmers' current practice does not. Appropriate land management measures for particular locations depend on a complex suite of social, economic, and biophysical factors, and need to be developed in participation with farmers. The role of agroforestry in sustainable management of sloping lands is the subject of networks coordinated by the International Board for Soil Research and Management (IBSRAM) in seven countries in Asia (ASIALAND) and four countries in the Pacific (PACIFICLAND). We review selected outcomes from a wealth of network data. From these results the following conclusions about the sustainability of various agroforestry systems for sloping lands can be drawn: • In the Pacific, soil loss from sloping lands due to water erosion under farmers' current practices is episodic, unpredictable, and possibly not severe; • Agroforestry systems that utilize legume shrubs, fruit trees, coffee (Coffea spp.) or rubber (Hevea brasiliensis) provide useful economic returns, but are not an essential component in terms of soil protection because grass or pineapple (Ananas comosus) planted on the contour are equally effective in reducing erosion; • Agricultural intensification will lead to nutrient mining, reduction of aboveground biomass, declining yields, and less soil protection unless external sources of nutrients are used; • nitrogen can be effectively supplied using legumes; • Cash derived from hedgerow trees and/or shrubs may providean incentive for their adoption by farmers, as well as funds to purchase external inputs such as fertilizers; • Labor may be a major constraint to the adoption of complex agroforestry systems. We also discuss the information management systems required to effectively manage and utilize the extensive sets of experimental and indigenous data being accumulated. We believe such information systems can facilitate technology transfer across and between regions, and improve the efficiency of research into agroforestry and other land-management approaches. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:hedgerow systems  Pacific  soil conservation  Southeast Asia  steeplands  tropical soils
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号