摘 要: | 储粮害虫会降低粮食及其产品的重量、品质和营养健康指数,并且我国粮虫检测方式仍然以人工检测为主。为满足储粮害虫快速检测的需求,采用气相色谱-质谱联用仪(GC-MS)获得了赤拟谷盗(Tribolium castaneum(Herbst))的主要特定挥发性有机化合物(VOCs),根据这些化合物的性质筛选出多个金属氧化物气敏传感器,并以传感器阵列为核心开发了储粮害虫电子鼻检测装置。该装置采集了赤拟谷盗、被赤拟谷盗侵染的面粉、被长头谷盗(Latheticus oryzae Waterhouse)侵染的面粉3种实验对象的气味信息,提取每条响应曲线的相对变化值和相对积分值作为原始特征矩阵(10×2),使用主成分分析(PCA)和偏最小二乘回归算法(PLSR)对原始特征矩阵进行分析,并通过建立回归预测模型,实现了对面粉中赤拟谷盗和长头谷盗虫口密度的预测。优化后的传感器数量由10个减少至8个,赤拟谷盗样品的两个主成分累计的贡献率为79.4%。基于PLSR的预测模型对面粉中赤拟谷盗的数量有很好的预测效果(校正集:相关系数r=0.88,均方根误差为8.09;验证集:r=0.89,均方根误差为7.75);该预测模型对面粉中长头谷盗的数量也有很好的预测效果(校正集:r=0.94,均方根误差为5.85;验证集:r=0.94,均方根误差为6.08)。研究结果表明:该装置能够满足判别储粮中不同虫口密度样本的基本需要,并且具有可靠的稳定性。
|