首页 | 本学科首页   官方微博 | 高级检索  
     检索      

草鱼生长相关的微卫星标记在选育群体中的验证
引用本文:余成晨,沈玉帮,徐晓雁,王荣泉,李家乐.草鱼生长相关的微卫星标记在选育群体中的验证[J].水产学报,2021,45(3):321-332.
作者姓名:余成晨  沈玉帮  徐晓雁  王荣泉  李家乐
作者单位:1.上海海洋大学农业部淡水水产种质资源重点实验室,上海 201306;2. 上海海洋大学上海水产养殖工程技术研究中心,上海 201306;3. 上海海洋大学水产科学国家级实验教学示范中心,上海 201306,1.上海海洋大学农业部淡水水产种质资源重点实验室,上海 201306;2. 上海海洋大学上海水产养殖工程技术研究中心,上海 201306;3. 上海海洋大学水产科学国家级实验教学示范中心,上海 201306,1.上海海洋大学农业部淡水水产种质资源重点实验室,上海 201306;2. 上海海洋大学上海水产养殖工程技术研究中心,上海 201306;3. 上海海洋大学水产科学国家级实验教学示范中心,上海 201306,苏州市申航生态科技发展股份有限公司农业部大宗淡水鱼类繁育与健康养殖技术重点实验室,1.上海海洋大学农业部淡水水产种质资源重点实验室,上海 201306;2. 上海海洋大学上海水产养殖工程技术研究中心,上海 201306;3. 上海海洋大学水产科学国家级实验教学示范中心,上海 201306
基金项目:上海市工程中心提升项目(19DZ2284300);现代农业产业技术体系(CARS-45-03)
摘    要:生长性状是水产动物遗传育种中的重要经济性状,利用与性状相关的分子标记与育种相结合的手段,可以大大加速育种进程。在对草鱼生长性状的前期研究中,采用数量性状位点(QTL)定位的方法,在1号连锁群中发现了2个与生长相关的QTL。在此基础上,实验利用这2个QTL侧翼的2对微卫星标记(CID391_2、CID1512、CID973_1和CID254_1),对长江草鱼选育群体的480个个体进行分析,以期基于草鱼QTL定位结果,对草鱼生长相关的微卫星标记在选育群体中进行验证。结果显示:(1)4个微卫星标记在该群体中均具有高度多态性,其中各位点观测等位基因数(N_a)为12~23个,有效等位基因数(N_e)为4~12个,观测杂合度(H_o)为0.607~0.904,期望杂合度(H_e)为0.751~0.902;(2)利用方差分析及多重比较对4个多态性的微卫星标记与选育草鱼群体的生长性状(体质量和体长)进行关联分析,发现CID391_2在雌性个体中,各基因型与体质量和体长之间均无显著差异;而在雄性个体中,各基因型与体质量和体长之间差异显著。CID1512、CID973_1和CID254_1在雌性或雄性个体中,各基因型与体质量和体长之间均具有显著差异。研究表明,对草鱼生长相关的微卫星标记在选育群体中的验证结果,为进一步开展草鱼生长性状QTL定位研究和基于QTL结果的分子标记辅助育种(MAS)实践奠定理论基础。

关 键 词:草鱼  生长性状  多态性  关联分析  微卫星
收稿时间:2020/2/22 0:00:00
修稿时间:2020/5/11 0:00:00

Verification of microsatellite markers associated with growth traits in selected populations of grass carp (Ctenopharyngodon idella)
YU Chengchen,SHEN Yubang,XU Xiaoyan,WANG Rongquan,LI Jiale.Verification of microsatellite markers associated with growth traits in selected populations of grass carp (Ctenopharyngodon idella)[J].Journal of Fisheries of China,2021,45(3):321-332.
Authors:YU Chengchen  SHEN Yubang  XU Xiaoyan  WANG Rongquan  LI Jiale
Institution:1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 2. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China 201306; 3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China 201306,1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 2. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China 201306; 3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China 201306,1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 2. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China 201306; 3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China 201306,Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources,1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 2. Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China 201306; 3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China 201306
Abstract:Growth traits are important economic traits in genetic breeding of aquaculture species. The combination of trait-related molecular markers and breeding can greatly accelerate the breeding process. In our previous research on the growth traits of grass carp, using the method of QTL mapping, we found two growth-related QTLs in the linkage group 1. Based on this, two pairs of the two QTL flanking markers (CID391_2, CID1512, CID973_1, and CID254_1) were used to analyze the 480 individuals of the grass carp in the Yangtze River system in order to verify these microsatellite markers associated with growth traits in selected populations of grass carp. The results showed that: (1) the four microsatellite markers were highly polymorphic in this population (PIC> 0.50), among which the number of observed alleles (Na) at each locus was 12 to 23, and the number of effective alleles (Ne) was 4 to 12, the observed heterozygosity (Ho) was 0.607-0.904, and the expected heterozygosity (He) was 0.751-0.902; (2) by means of association analysis oneway analysis and multiple comparisons of the genotypes and the growth traits (weight and body length) in the selected populations of grass carp. CID391_2 showed no significant difference between genotypes and the two growth traits in female individuals (P> 0.05), while there was significant difference between genotypes and the two growth traits in male individuals (P <0.05); CID1512, CID973_1 and CID254_1 showed significant differences between each genotype and the two growth traits in female or male individuals (P <0.05). This study has verified microsatellite markers associated with growth traits in selected populations of grass carp. It will provide a basis for further research on QTL mapping in grass carp and the practice of of molecular marker assisted selection (MAS) based on QTL mapping.
Keywords:Ctenopharyngodon idella  growth trait  polymorphism  association analysis  microsatellite
本文献已被 CNKI 等数据库收录!
点击此处可从《水产学报》浏览原始摘要信息
点击此处可从《水产学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号