首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Xe NMR spectroscopy of adsorbed xenon as an approach for the characterisation of soil meso- and microporosity
Authors:SV Filimonova  W Häusler  I Kögel-Knabner
Institution:Lehrstuhl für Bodenkunde, Technische Universität München, Freising-Weihenstephan, D-85350, Germany
Abstract:129Xe nuclear magnetic resonance (NMR) spectroscopy of adsorbed xenon was applied for the characterisation of soil meso- and microporosity. Model systems (Ca-montmorillonite, quartz sand) and three soil types (Luvisol Alh, Bt and Cv horizons; Gleysol Go horizon; Podzol Bvs horizon) were studied. For Ca-montmorillonite, the average intercrystallite pore size has been evaluated. In natural soils, 129Xe resonance parameters were shown to be affected by different factors: pore heterogeneity, influence of organic functional groups, possible presence of paramagnetic compounds, occurrence of xenon exchange between inter- and intraparticle void spaces. The effect of those factors on the pattern of 129Xe NMR spectra was tested. In the three soils studied, no micropores within the mineral phase available for xenon adsorption were found. The most probable reason is that such pores are occupied by small molecules of the soil organic matter (SOM). Variable extent of accessibility of mesopores within the mineral phase of the various soils was revealed. It was highest in the Podzol. Here, xenon exchange between different adsorption zones (i.e., pores of differing size, e.g., internal and external void spaces) was slow on an NMR time scale that allowed to detect separate signals, each characterising xenon behaviour in the respective adsorption zone. The pore system of the soil organic matter was shown to be not accessible for xenon, as it is accepted for N2 and other nonpolar adsorbates. Based on analysis of the spectra, a model for the possible mutual location of organic matter and iron compounds in natural soils was suggested. According to this model, a certain part of organic matter species can form the layers above iron species, thus masking them and preventing 129Xe NMR spectra from significant low-field shifts and signal broadening.
Keywords:Xenon  Nuclear magnetic resonance  Meso- and micropores  Adsorption  Quartz sand  Montmorillonite  Natural soils
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号