首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined grazing and fire management may reverse woody shrub encroachment in desert grasslands
Authors:Wang  Guan  Li  Junran  Ravi  Sujith
Institution:1.Department of Geosciences, The University of Tulsa, Tulsa, OK, 74104, USA
;2.Department of Earth and Environmental Science, Temple University, Philadelphia, PA, 19122, USA
;
Abstract:Context

Fire and controlled grazing have been widely adopted as management interventions to counteract woody shrub proliferation in many arid and semiarid grassland systems. The actual intensity of grazing and fire, along with the timing of the interventions, however, are difficult to determine in practice.

Objectives

This study aims to establish model simulations to access the long-term landscape changes under different land management scenarios.

Methods

We developed a cellular automata model to evaluate landscape dynamics in response to scenarios of grazing, fire, time of intervention, and initial coverage of grasses and shrubs.

Results

With current grazing intensity and fire suppression, the landscape may shift to a shrub-dominated landscape in 100–150 years. An appropriate combination of grazing and fire management could help maintain over 50% of grass cover and reduce the shrub cover to less than 2%, keeping the landscape highly reversible. Even using 1% grazing intensity and periodic fire once a year, the management tools should be implemented in 60 years, otherwise, they may lose effectiveness and the vegetation transition to grasslands would become impossible.

Conclusions

This study highlighted that the reintroduction of fire not only directly removes shrubs but also reallocates soil water and resources among different microsites, which may accelerate grass recovery and suppress shrub regrowth, potentially reversing the shrub invasion process. The combined grazing and fire management plans should be carried out before a threshold time depending on the chosen management tools.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号