首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of root-zone temperature and N,P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics
Authors:Qiuyan Yan  Jingdong Mao  Xun Li  Fei Dong
Institution:1. State Key Laboratory of Soil and Sustainable Agriculture , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China;2. Department of Chemistry and Biochemistry , Old Dominion University , 4541 Hampton Blvd., Norfolk , VA 23529 , United States;3. Agricultural Bureau of Xiangfen County , Shanxi Province, 041500 , China
Abstract:The nutrient uptake and allocation of cucumber (Cucumis sativus L.) seedlings at different root-zone temperatures (RZT) and different concentrations of nitrogen (N), phosphorus (P), and potassium (K) nutrients were examined. Plants were grown in a nutrient solution for 30?d at two root-zone temperatures (a diurnally ?uctuating ambient 10°C-RZT and a constant 20°C-RZT) with the aerial parts of the plants maintained at ambient temperature (10°C–30°C). Based on a Hoagland nutrient solution, seven N, P, and K nutrient concentrations were supplied to the plants at each RZT. Results showed that total plant and shoot dry weights under each nutrient treatment were significantly lower at low root-zone temperature (10°C-RZT) than at elevated root-zone temperature (20°C-RZT). But higher root dry weights were obtained at 10°C-RZT than those at 20°C-RZT. Total plant dry weights at both 10°C-RZT and 20°C-RZT were increased with increased solution N concentration, but showed different responses under P and K treatments. All estimated nutrient concentrations (N, P, and K) and uptake by the plant were obviously influenced by RZT. Low root temperature (10°C-RZT) caused a remarkable reduction in total N, P, and K uptake of shoots in all nutrient treatments, and more nutrients were accumulated in roots at 10°C-RZT than those at 20°C-RZT. N, P, and K uptakes and distribution ratios in shoots were both improved at elevated root-zone temperature (20°C-RZT). N supplies were favorable to P and K uptake at both 10°C-RZT and 20°C-RZT, with no significantly positive correlation between N and P, or N and K uptake. In conclusion, higher RZT was more beneficial to increase of plant biomass and mineral nutrient absorption than was increase of nutrient concentration. Among the three element nutrients, increasing N nutrient concentration in solution promoted better tolerance to low RZT in cucumber seedlings than increasing P and K. In addition, appropriately decreased P concentration favors plant growth.
Keywords:cucumber  root zone temperature  dry weight  nutrient concentration  uptake  transport ratio  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号