摘 要: | 为了提高有遮挡车牌的识别准确率,提出一种改进深度残差网络(Deep residual network,ResNet)损失函数的车牌识别方法。首先运用图像平滑处理技术对图像特征进行增强,其次利用边缘检测算法实现对车牌的定位,然后基于先验知识按照标准车牌中各个字符的比例对车牌进行分割。在此基础上,运用改进后的Res Net网络对有遮挡车牌样本库进行训练以及识别,并采用同样样本大小的无遮挡车牌样本库进行对比实验。实验结果表明,改进后的Res Net网络采用有遮挡车牌样本库训练的模型具有较好的识别准确率,且更具有鲁棒性。
|