首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Linking plant identity and interspecific competition to soil nitrogen cycling through ammonia oxidizer communities
Authors:Fenliang Fan  Fusuo Zhang
Institution:a College of Resources and Environmental Sciences, China Agricultural University, Yuanmingyuan West Road, No. 2, Beijing 100094, China
b Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract:Both plants and microbes influence soil nutrient cycling. However, the links between plants, microbes and nutrient cycling are poorly understood. In this study, we investigated how plant identity and interspecific competition influence soil nitrogen cycling and attempted to link plant identity and interspecific competition to community structures of bacterial and archaeal ammonia oxidizers based on terminal restriction fragment length polymorphism analysis (T-RFLP) of bacterial and archaeal ammonia monooxygenase (amoA) genes. Faba bean and maize monocultures and a faba bean/maize mixture were planted with two nitrogen levels (0 and 100 mg N kg−1 soil as urea). Soil mineral nitrogen, ammonia oxidizer function (potential nitrification activity, PNA) and community structures were measured 28 and 54 days after plant emergence. Faba bean and maize substantially differed in their influences on mineral nitrogen concentrations and PNA in rhizosphere soils. Soil mineral nitrogen and PNA in the rhizosphere soils of the faba bean/maize mixture were closer to those of the maize monoculture than to those of the faba bean monoculture. T-RFLP with restriction enzymes BsaJI and Hpy8I distinguished variations in bacterial and archaeal ammonia oxidizers community structure, respectively, and detected both between-cluster and within-cluster variations in bacterial ammonia oxidizers. T-RFLP data showed that nitrogen addition favored part of a Nitrosospira cluster 3b sequence type and suppressed part of a cluster Nitrosospira 3a sequence type of bacterial ammonia oxidizers, while it had no influence on the archaeal ammonia oxidizer community structure. Although multivariate analysis showed that the function and community structure of bacterial ammonia oxidizers were significantly correlated, plant species and interspecific competition did not significantly change the community structure of bacterial and archaeal ammonia oxidizers. These results indicate that plant species and interspecific competition regulate soil nitrogen cycling via a mechanism of other than alteration in the community structure of ammonia oxidizers as investigated by DNA based methods.
Keywords:AOA  AOB  Community structure  Interspecific competition  Potential nitrification activity  Nitrosospira  Plant identity  T-RFLP
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号