摘 要: | 【目的】针对河蟹养殖过程中,水位变化以及无人艇路径规划算法收敛慢、精度低的问题,为提高算法适应性与寻优能力,提出一种多目标粒子群-蚁群融合的无人艇路径规划算法。【方法】首先,分析蟹塘环境及养殖规律等因素,建立静态水深栅格环境模型;其次,针对覆盖遍历式投饵存在局部点投喂不足及路径次优的问题,通过对惯性参数与学习因子的非线性调整,提出基于多目标的改进粒子群算法(Particle swarm optimization, PSO);然后,调整蚁群算法的初始信息素,并对蚁群算法的信息素挥发因子和启发期望函数自适应改进,提出自适应优化蚁群算法(Ant colony optimization, ACO);最后,为解决单一算法寻优不足,利用融合PSO-ACO算法,实现无人艇多目标全局路径规划。【结果】仿真结果表明:不同环境投饵策略下,PSO-ACO算法在对多目标路径寻优时,不仅环境适应性好,而且提高了寻优效率和精度,运行时间节省了32%,路径距离缩短了9.78%,迭代次数降低了62.88%,拐点数目减少了44.45%。【结论】所提出多目标点的路径规划算法适用于环境可变的蟹塘养殖,具有较好的应用价值。
|