首页 | 本学科首页   官方微博 | 高级检索  
     检索      

毛竹林立地与结构的关系及其对生物量的影响
引用本文:杨帆,汤孟平.毛竹林立地与结构的关系及其对生物量的影响[J].浙江农林大学学报,2020,37(5):823-832.
作者姓名:杨帆  汤孟平
作者单位:1.浙江农林大学 省部共建亚热带森林培育国家重点实验室,浙江 杭州 3113002.浙江农林大学 环境与资源学院,浙江 杭州 311300
基金项目:国家林业局林业公益性行业科研专项(20150430303);国家自然科学基金资助项目(31870617)
摘    要:  目的  研究立地因子和结构因子中影响毛竹Phyllostachys edulis林生物量的主导因子,并解析主导因子之间的关系及其对毛竹林生物量的影响。  方法  在浙江省10个县(市)选择少受人为干扰的毛竹林,设置52个样地,通过随机森林筛选出影响毛竹林生物量的主导因子,在此基础上构造结构方程模型,分析各主导因子对毛竹林生物量的直接、间接和总影响。  结果  立竹度、林分平均胸径和竞争指数是林分结构因子中影响毛竹林生物量的主导因子。土层厚度和海拔高度是立地因子中影响毛竹林生物量的主导因子。结构方程模型分析结果表明:模型中所预设的路径能够被接受,也能较好体现所采集的数据。立竹度、林分平均胸径、竞争指数和土层厚度的总影响为正,对毛竹林生物量有正影响。海拔的总影响为负,对毛竹林生物量有负影响。林分平均胸径对毛竹林生物量的总影响最大,为0.739。立竹度对毛竹林生物量的直接影响大于间接影响。土层厚度对毛竹林生物量的间接影响最大,达0.492。立地因子中,土层厚度对毛竹林生物量的总影响大于海拔高度。海拔高度、土层厚度和竞争指数对毛竹林的间接影响大于直接影响。  结论  毛竹林的主要构件因子立竹度和林分平均胸径与毛竹林生物量的关系最为密切。海拔高度、土层厚度和竞争指数主要通过影响毛竹林的构件因子,间接影响毛竹林生物量。在毛竹林经营中,应当综合考虑立地因子、非空间结构和空间结构及其相互关系对毛竹林生物量的影响,在充分利用立地潜力的基础上,调控毛竹林结构,提高毛竹林生产力。图3表3参40

关 键 词:森林生态学    毛竹林    立地因子    林分结构因子    结构方程模型    随机森林
收稿时间:2019-09-28

Relationship between site and structure and its influence on biomass in Phyllostachys edulis forest
YANG Fan,TANG Mengping.Relationship between site and structure and its influence on biomass in Phyllostachys edulis forest[J].Journal of Zhejiang A&F University,2020,37(5):823-832.
Authors:YANG Fan  TANG Mengping
Institution:1.State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China2.School of Environmental & Resource Sciences, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
Abstract:  Objective  The objective of this study is to find out dominant factors affecting the biomass of moso bamboo(Phyllostachys edulis) forest from site factor and stand structure factor, and to analyze the relationship between dominant factors and their effects on stand biomass.  Method  In 10 counties (cities) of Zhejiang Province, 52 sample plots of moso bamboo forest less disturbed by human beings were selected and the dominant factors were obtained by random forest. On this basis, the structural equation model was constructed to analyze the direct, indirect and total effects of each dominant factor on stand biomass.  Result  The results of random forest showed that culm density, average DBH, competition index, soil thickness and altitude were main factors affecting biomass of moso bamboo forest. The results of structural equation model analysis showed that the preset path in the model could be accepted and the collected data could be well reflected. The total effect of culm density, average DBH, competition index and soil thickness was positive, which had positive effect on the biomass of moso bamboo forest. The total effect of altitude was negative, which had negative effect on the biomass of moso bamboo forest. The total effect of average DBH was biggest, which was 0.739. The direct effect of bamboo degree on the biomass of moso bamboo forest was greater than indirect effect. The direct effect of culm density was greater than indirect effect. The indirect effect of soil thickness was biggest, reaching 0.492. Among the site factors, the total effect of soil thickness on the biomass of moso bamboo was greater than that of altitude. The indirect effect of soil thickness, altitude and competition index was greater than the direct effect.  Conclusion  The main component factors of moso bamboo forest, such as culm density and average DBH, are most closely related to the biomass of moso bamboo forest. Altitude, soil thickness and competition index indirectly affect the biomass of moso bamboo forest through the component factors of moso bamboo forest. In the management of moso bamboo forest, the influence of site factors, non-spatial structure, spatial structure and their interrelations on the biomass of moso bamboo forest should be considered comprehensively, and the structure of moso bamboo forest should be adjusted on the basis of making full use of the site potential in order to improve the productivity of moso bamboo forest. Ch, 3 fig. 3 tab. 40 ref.]
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号