首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Response of five tree species to salinity and waterlogging: shoot and root biomass and relationships with leaf and root ion concentrations
Authors:R Isla  M Guillén  R Aragüés
Institution:1. Soils and Irrigation Department (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre of Aragón (CITA), Aragón Government, Avda. Monta?ana 930, 50059, Saragossa, Spain
Abstract:Unproductive saline and waterlogged (WT) wastelands could be beneficially transformed into agroforestry systems using trees tolerant to these stresses. We studied the salinity and waterlogging tolerance of five Australian tree species (Acacia salicina, Casuarina glauca, Casuarina obesa, Eucalyptus camaldulensis and Eucalyptus occidentalis) during seedling stage and their relationships with root and leaf ion concentrations. 8-month old plants were exposed for 5 months to five irrigation water salinity treatments (EC values between 2 and 22 dS m?1) and two waterlogging treatments (drained or WT). The salinity tolerance of the five species was high, although decreased in WT conditions. Irrespective of salinity, the two Casuarina species were more tolerant and the other three species were less tolerant to WT than drained conditions. In all species, salinity and waterlogging increased leaf Cl? and Na+ and decreased leaf Ca2+, but not leaf K+. Root Cl? and Na+ increased with salinity but not with waterlogging. Salinity tolerance was negatively correlated with Cl? and Na+ leaf accumulation rates per unit increase in salinity. Waterlogging reduced the ability of the seedlings to exclude Cl? and Na+ from the leaves. The two most salt tolerant Casuarina species under both drained and WT conditions showed the highest leaf Cl? and Na+ exclusion and the highest root Cl? and Na+ accumulation, suggesting that sequestration of these toxic ions in their roots was a significant salt-tolerant mechanism. Revegetation of saline and WT wastelands with these tolerant Casuarina species could be profitably used for biomass, biofuel and renewable energy production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号