首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isolation and characterization of <Emphasis Type="Italic">Serratia rubidaea</Emphasis> from dark brown spots of tomato fruits
Authors:Mohamed Hemida Abd-Alla  Shymaa R Bashandy  Sylvia Schnell  Stefan Ratering
Institution:(1) Botany Department, Faculty of Science, Assuit University, Assuit, 71516, Egypt;(2) Institute of Applied Microbiology, Justus-Liebig University, IFZ, Giessen, Germany
Abstract:Bacterial contamination of fresh tomato fruits is of great concern. From naturally infected tomato fruits showing dark brown irregularly shaped spots, 36 bacterial isolates were recovered and identified on phenotypic characteristics and sequences of the gene encoding the 16S rRNA. Five isolates showing spots on tomato fruits in the pathogenicity test with healthy tomato fruits belong to the genus Serratia on the basis of phenotypic characteristics. One representative isolate of these has been further identified as a Serratia rubidaea by sequencing of the 16S rRNA gene. This is the first evidence showing that a S. rubidaea strain can cause spots on tomato fruits. Virulence of the S. rubidaea was also confirmed by the production and secretion of a large variety of enzymes capable of degrading the complex polysaccharides of the plant cell wall and membrane constituents. Nineteen bacterial isolates of the 36 did not induce any spot symptoms in a pathogenicity test on artificially infected tomato fruits although these are known as phytopathogenic bacteria. Five of these 19 bacterial isolates were identified as Ralstonia species on the basis of biochemical tests. Sequencing of the 16S ribosomal gene of one representative isolate revealed that the isolate is closely related to Ralstonia solanacearum. Six isolates of the 19 were related to Xanthomonas vesicatoria on the basis of biochemical tests and eight were related to the Enterobacteriaceae. One representative isolate of the Enterobacteriaceae could be identified by the 16S rRNA gene as Enterobacter cloacae subsp. dissolvens. The 12 other strains were related to Proteus mirabilis based on the 16S RNA gene sequence of one representative isolate. The isolates related to P. mirabilis did not produce any symptoms on artificially infected tomato fruits. The nucleotide sequences of S. rubidaea strain E9, E. cloacae strain E23, P. mirabilis strain E11, and R. solanacearum strain E15 have been deposited in the GenBank nucleotide sequence database under accession numbers HM585373 to HM585376.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号