首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber
Abstract:Abstract

A salt-sensitive cucumber cultivar “Jinchun No. 2” (Cucumis sativus L.) was used to investigate the role of proline in alleviating salt stress in cucumber. Proline was applied twice (day 0 and day 4 after salt treatment) as a foliar spray, with a volume of 25?mL per plant at each time. Plant dry weight, leaf relative water content, proline, malondialdehyde (MDA), Na+, K+ and Cl? contents, as well as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in the plants were determined at day 8 after salt treatment. The results showed that 100?mmol?L–1 NaCl stress significantly decreased plant dry weight, leaf relative water and K+ contents, and increased leaf MDA, Na+ and Cl? contents and SOD, POD, CAT and APX activities. However, leaf proline accumulation was not affected by salinity. The exogenous application of proline significantly alleviated the growth inhibition of plants induced by NaCl, and was accompanied by higher leaf relative water content and POD activity, higher proline and Cl? contents, and lower MDA content and SOD activity. However, there was no significant difference in Na+ and K+ contents or in CAT and APX activities between proline-treated and untreated plants under salt stress. Taken together, these results suggested that the foliar application of proline was an effective way to improve the salt tolerance of cucumber. The enhanced salt tolerance could be partially attributed to the improved water status and peroxidase enzyme activity in the leaf.
Keywords:anti-oxidant enzyme system  Cucumis sativus L    proline  salinity  water status
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号