首页 | 本学科首页   官方微博 | 高级检索  
     

植物内生肠杆菌对狗牙根耐盐性的调控研究
引用本文:赵欣桐,陈晓东,李子吉,张巨明,刘天增. 植物内生肠杆菌对狗牙根耐盐性的调控研究[J]. 草业学报, 2021, 30(9): 127-136. DOI: 10.11686/cyxb2020317
作者姓名:赵欣桐  陈晓东  李子吉  张巨明  刘天增
作者单位:华南农业大学林学与风景园林学院,广东省草业工程技术研究中心,广东 广州 510642
基金项目:广东省自然科学基金(2020A1515011261)
摘    要:
以从海滨雀稗中分离得到的内生肠杆菌为材料,采用种子萌发与盆栽试验两种方式研究植物内生细菌对狗牙根耐盐性的影响.通过对狗牙根种子和幼苗接种单一内生细菌和混合内生细菌,并测定种子发芽率、苗长、根长、生物量等生长指标与叶绿素含量、相对含水量、相对电导率和叶片中钠离子、钾离子的含量综合评价植物内生细菌对狗牙根耐盐能力的调控.结...

关 键 词:内生细菌  狗牙根  种子萌发  耐盐能力
收稿时间:2020-07-06
修稿时间:2020-09-24

An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass
ZHAO Xin-tong,CHEN Xiao-dong,LI Zi-ji,ZHANG Ju-ming,LIU Tian-zeng. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass[J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. DOI: 10.11686/cyxb2020317
Authors:ZHAO Xin-tong  CHEN Xiao-dong  LI Zi-ji  ZHANG Ju-ming  LIU Tian-zeng
Affiliation:College of Forestry and Landscape Architecture,South China Agricultural University,Guangdong Engineering Research Center for Grassland Science,Guangzhou 510642,China
Abstract:
Endogenous Enterobacter species were isolated from Paspalum vaginatum and were then used to study the influence of plant endophytic bacteria on the salt tolerance of bermudagrass in two methods of seed germination and pot experiment. In pot experiments germinating bermudagrass seeds and seedlings forming miniature turves in pots 10 cm×10 cm×9 cm were inoculated with a single species of endophytic bacterium (Enterobacter ludwigii) or with a mixture of two endophytic bacterial species (E. ludwigii+Enterobacter bugandensis). The experiments also included blank controls (CK). Seed germination rate, shoot length, root length and biomass growth indexes, chlorophyll content, relative water content, relative electrical conductivity and leaf contents of sodium and potassium ions were determined to provide a comprehensive evaluation of effects of endophytic bacteria on bermudagrass salt tolerance. It was found that when germinating bermudagrass seeds under 150 mmol·L-1 NaCl stress were assessed after 14 days, germination, radicle length and plumule length each ranked B3014>B30>CK (P<0.05). For potted plants subjected to 200 mmol·L-1 NaCl stress that had formed turves, inoculation with endophytic bacteria enhanced turf quality, shoot length, root growth, shoot and root biomass, chlorophyll content and relative water content of leaves, and also reduced cell membrane electrolyte leakage and these effects were more pronounced for B3014 than for B30 (P<0.05). In addition the endophytic bacteria facilitated reduction of Na+ and increase in K+ concentrations in tissues of inoculated plants, with these effects again more pronounced in the B3014 treatment than in the B30 treatment. In summary, inoculation with Enterobacter improved seed germination and salt tolerance of bermudagrass seedlings under salt stress, and B3014 was more effective than B30 alone. Enhancement of the salt tolerance of bermudagrass by inoculation with endophytic bacteria provides a new method for improving the performance of turfgrass in saline alkali environments.
Keywords:endophytic bacteria  bermudagrass  seed germination  salt tolerance  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《草业学报》浏览原始摘要信息
点击此处可从《草业学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号