首页 | 本学科首页   官方微博 | 高级检索  
     

基于高光谱的油菜叶面积指数估计
引用本文:马驿,汪善勤,李岚涛,张铮,刘诗诗. 基于高光谱的油菜叶面积指数估计[J]. 华中农业大学学报, 2017, 36(2): 69-77
作者姓名:马驿  汪善勤  李岚涛  张铮  刘诗诗
作者单位:华中农业大学资源与环境学院,武汉,430070
基金项目:国家高技术研究发展计划(“863”)项目(2013AA102401-3)
摘    要:
以冬油菜为研究对象,2014-2015年度设计了不同施氮水平直播油菜小区试验,在不同生育时期测量冠层光谱、土壤背景光谱以及叶面积指数(leaf area index,LAI),通过相关分析选取了12个光谱特征参数和11个植被指数,建立6叶期至角果期LAI的5种线性和非线性定量反演模型。结果表明:二次多项式反演模型比较适合估算油菜LAI苗期时以红边参数为代表的光谱特征参数,可准确估算出LAI;6叶期时红边幅值预测模型R~2为0.81,RMSEP为0.39,RPD为1.62;8叶期时红蓝边面积比归一化预测模型R~2为0.79,RMSEP为0.60,RPD为2.30;10叶期时红边幅值预测模型R~2为0.92,RMSEP为0.47,RPD为2.36;盛花期时蓝边面积预测模型R~2为0.87,RMSEP为0.34,RPD为2.57;角果期时以RDVI为代表的植被指数也可准确估算出LAI,预测模型R~2为0.74,RMSEP为0.57,RPD为1.36。油菜全生育期采用相同光谱特征参数、植被指数建模估计LAI精度明显降低,预测R~2远小于0.75,RMSEP大于0.65,RPD值均小于1.40,表明难以采用统一参数建模准确估计油菜全生育期LAI,不同生长时期需选择合适的光谱参数、植被指数分段建模估计LAI。

关 键 词:油菜  叶面积指数  高光谱  相关分析
收稿时间:2016-10-09

Prediction of rapeseed leaf area index based on hyperspectral data
MA Yi,WANG Shanqin,LI Lantao,ZHANG Zheng,LIU Shishi. Prediction of rapeseed leaf area index based on hyperspectral data[J]. Journal of Huazhong Agricultural University, 2017, 36(2): 69-77
Authors:MA Yi  WANG Shanqin  LI Lantao  ZHANG Zheng  LIU Shishi
Abstract:
Plot experiments of the winter rapeseed (Brassica napus L.) with different nitrogenous levels under direct seeding treatment were conducted in 2014-2015.The canopy spectral reflectance,soil background,LAI of each plot were measured at different stages.Correlation analysis between the canopy spectral reflectance and LAI was used to calculate eleven vegetation indices and twelve spectral parameters based on spectral position and area for optimizing five kinds of linear and nonlinear (logarithm,parabola,power and exponential) quantitative remote sensing inversion models to estimate LAI at the different and whole growth stages.The results showed that the quadratic polynomial inversion models perfectly estimated LAI of winter rapeseed using hyperspectral techniques.The spectral red edge parameters estimated accurately LAI at seedling stage.The predicted models based on Dr,NBR,Dr produced better estimation for LAI at six-leaf stage,eight-leaf stage and ten-leaf stage,respectively.R2 was 0.81,0.79 and 0.92 (P < 0.01),respectively.RMSEP (root mean square error of predicted models) was 0.39,0.60 and 0.47,respectively.RPD (residual predictive deviation) was 1.62,2.30 and 2.36,respectively.The predicted models based on SDb and RDVI produced better estimation for LAI at full-bloom stage and pod stage with R2 of 0.87 and 0.74(P<0.01),RMSEP of 0.34 and 0.57,and RPD of 2.57 and 1.36.The unified validation of models(R2<0.75,RMSEP>0.65,RPD<1.4) showed that there was low prediction precision with the unified spectral variables or vegetation indices monitoring LAI at the whole stages of growth.The prediction accuracy of monitoring model based on the appropriate spectral variables and vegetation indices to estimate LAI at different stages of the winter rapeseed growth was high.
Keywords:rapeseed   leaf area index   hyperspectral data   correlation analysis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华中农业大学学报》浏览原始摘要信息
点击此处可从《华中农业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号