首页 | 本学科首页   官方微博 | 高级检索  
     

基于T-S模糊神经网络的地下水水质评价
引用本文:张宇,卢文喜,陈社明,龚磊. 基于T-S模糊神经网络的地下水水质评价[J]. 节水灌溉, 2012, 0(7): 35-38
作者姓名:张宇  卢文喜  陈社明  龚磊
作者单位:吉林大学环境与资源学院,吉林长春,130026
基金项目:吉林省科技发展计划项目
摘    要:采用T-S模糊神经网络模型对吉林省西部地区部分地下水水化学监测点水质进行评价。T-S模糊神经网络模型是根据模糊系统和人工神经网络优缺点具有明显的互补性结合而成,考虑了水质评价标准的区间形式和水系统的不确定性。将T-S模糊神经网络的评价结果与水质综合评价方法中经典的内梅罗指数法和BP人工神经网络法的评价结果进行对比,结果表明:T-S模糊神经网络法评价地下水水质更全面更客观。利用该方法对吉林西部的地下水水质进行评价,结果显示:吉林西部地区地下水资源已经遭受不同程度的污染,需要进行有效的保护。

关 键 词:T-S模糊神经网络  地下水  水质评价  吉林西部

Groundwater Quality Evaluation Based on TSFNN
ZHANG Yu,LU Wen-xi,CHEN She-ming,Gong Lei. Groundwater Quality Evaluation Based on TSFNN[J]. Water Saving Irrigation, 2012, 0(7): 35-38
Authors:ZHANG Yu  LU Wen-xi  CHEN She-ming  Gong Lei
Affiliation:(College of Environment and Resources,Jilin University,Changchun 130026,Jilin Province,China)
Abstract:The TSFNN model is used to evaluate groundwater quality of part water chemistry sites in western area of Jilin Province.The TSFNN model is built on the basis of the combination of advantages and disadvantages of fuzzy systems and ANN,and considering of the regional form of water quality standard and the uncertainty of water system.The comparisons among assessment results by Nemerow Index Method,which is a comprehensive assessment method of the water quality,BPANN method and TSFNN method is conducted.The results indicate that the TSFNN is more complete and objective in water quality assessment.The groundwater quality evaluation results by this method indicated that the groundwater resources in the west of Jilin Province has already polluted in varying degrees and needs effective protection.
Keywords:TSFNN  groundwaterl water quality evaluatiom west of Jilin Province
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号