首页 | 本学科首页   官方微博 | 高级检索  
     

求解任意多边形区域二维偏微分方程的小波精细积分法
引用本文:德淑敏,黄成,梅树立. 求解任意多边形区域二维偏微分方程的小波精细积分法[J]. 中国农业大学学报, 2007, 12(3): 81-84
作者姓名:德淑敏  黄成  梅树立
作者单位:1. 中国农业大学,信息与电气工程学院,北京,100083
2. 上海师范大学,基建规划处,上海,201418
基金项目:国家自然科学基金;中国农业大学校科研和教改项目
摘    要:
张量积小波数值法方法具有自适应性和较高的精度,但只适合求解定义在矩形区域的偏微分方程。将小波精细积分法与虚拟区域法相结合,构造了一种求解定义在任意多边形区域的二维偏微分方程的新小波数值方法。小波函数的紧支撑性降低了虚拟区域法的计算工作量。该方法可为求解定义在不规则区域上的工程动力学模型提供参考。

关 键 词:小波  精细积分  虚拟区域  偏微分方程
文章编号:1007-4333(2007)03-0081-04
修稿时间:2006-11-24

Wavelet precise integration method for 2D partial differential equations in polygon domain
De Shumin,Huang Cheng,Mei Shuli. Wavelet precise integration method for 2D partial differential equations in polygon domain[J]. Journal of China Agricultural University, 2007, 12(3): 81-84
Authors:De Shumin  Huang Cheng  Mei Shuli
Affiliation:1.College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2.Department of Capital Project, Shanghai Normal University, Shanghai 201418, China
Abstract:
The tensor wavelet numerical method possesses the self-adaptability and higher precision.But it is suitable to the problems only restricted to partial differential equations defined in rectangle domain.A kind of new wavelet numerical method for solving 2D partial differential equations in polygon domain is proposed.Based on the combination wavelet precise integration method with the fictious domain method.In this method,the compact support property improves the calculation efficiency of the fictious domain method,which is helpful to solving the dynamic model in engineering such as the rill erosion model.
Keywords:wavelet  precise integration method  fictious domain  partial differential equation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国农业大学学报》浏览原始摘要信息
点击此处可从《中国农业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号