首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of agricultural land use on distribution of microbial biomass and activity within soil aggregates
Authors:Anastasia V Vasilchenko  Lyudmila V Galaktionova  Nikolay Yu Tretyakov  Sergey M Dyachkov  Alexey S Vasilchenko
Institution:1. Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia;2. Faculty of Chemistry and Biology, Orenburg State University, Orenburg, Russia;3. Institute of Chemistry, Tyumen State University, Tyumen, Russia
Abstract:The presence of aggregates of various sizes in the soil is an important condition for soil carbon sequestration. In this system, microbial biomass is a key link. This work was devoted to the study of the influence of land use systems on the distribution of SOС, MB-SIR, microbial activity and eco-physiological indices (qCO2, QR, MB-SIR/SOС and qCO2/SOС) in relation to the size of soil aggregates. The distribution of SOС, MB-SIR and mineralization activity among the aggregates was heterogeneous. In the soil of crop rotation, high mineralization activity and MB-SIR were found in the aggregates 0.5–0.1 mm, in the monoculture soil in aggregates <0.1 mm and in the control soil in the aggregates 1–0.25 mm. There was a general trend towards a decrease in microbial activity, MB-SIR and SOС availability with an increase in aggregate size. In agricultural soils, microbial activity was determined by large aggregates (>5 mm), while in the control soil, by the aggregates 5–1 mm. Depending on the type of site and the size of aggregates, the differences in microbial metabolism were revealed. The qCO2 and QR values decreased, and the MB-SIR/SOС and qCO2/SOС increased in the series: control soil > crop rotation > monoculture. In the control soil, the values of the eco-physiological indices decreased with decreasing aggregate size. And vice versa, in agricultural soils, these parameters were the highest in the microaggregates (<0.25 mm). The monoculture soil, in contrast to the control soil and crop rotation soil, turned out to be more energy efficient.
Keywords:grain-fallow crop rotation  mineralization activity  monoculture  soil aggregates  soil microbial biomass  soil organic carbon
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号