首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Musculoskeletal responses of 2-year-old Thoroughbred horses to early training. 4. Morphometric,microscopic and biomechanical properties of the digital tendons of the forelimb
Authors:EC Firth  CW Rogers  BH Anderson
Institution:1. Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Private Bag 11222, Palmerston North, New Zealand E.C.Firth@massey.ac.nz;3. Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Private Bag 11222, Palmerston North, New Zealand;4. Institute of Veterinary, Animal and Biomedical Sciences , Massey University , Private Bag 11222, Palmerston North, New Zealand;5. Ballarat Veterinary Practice Equine Clinic , Miners Rest , Victoria, Australia
Abstract:AIM: To determine the weight, volume, density and cross-sectional area (CSA) of the digital flexor tendons, common digital extensor tendon (CDET) and suspensory ligament (SL) of the forelimb of young Thoroughbred horses in early training, and to assess the response to a training programme of known parameters of superficial digital flexor tendon (SDFT) tissue at mid-metacarpal level.

METHODS: The tendons of seven 2-year-old Thoroughbred horses in training were inspected, transected into segments of known length, and compared with those from seven untrained horses matched for age, sex and breed. The weight, volume, density and CSA of each segment, and the crimp angle, histological features, and biomechanical ultimate stress and stiffness of tendon samples from the mid-metacarpal region of the SDFT were determined.

RESULTS: There was no macroscopic evidence of swelling or discolouration in any of the tendon segments or cut surfaces. The volumes of SDFT and CDET segments of horses in the trained group were significantly greater than those in the untrained group (p=0.036 and p=0.039, respectively). A greater increase in volume than weight resulted in a lower density in the SDFT but not CDET in trained compared with untrained horses (p=0.038). CSA of these two tendons was significantly greater in the trained group (p=0.002 and 0.036, respectively), the percentage increase being greater in the CDET than the SDFT. The number of tenocytes at four sites in the mid-metacarpal SDFT region was less in trained than untrained horses (p=0.025). There was no histological evidence of inflammation, and no difference in crimp angle between groups. There was no significant between-group difference in stiffness or ultimate stress of tendon strips.

CONCLUSIONS: Volume and CSA of the SDFT and CDET were larger in trained than untrained horses. The SDFT was less dense in the trained group. Because no evidence of tendonitis was detected and training appeared to have no significant effect on crimp angle or biomechanical properties of tendon strips, the size and density changes were presumed to be adaptive and induced by the training.

CLINICAL RELEVANCE: Although evident in this in vitro study, the detection of adaptive from initial pathological increase in size of the SDFT is likely to be difficult in vivo.
Keywords:Horse  digital tendon  training  density  tensile testing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号