首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany
Authors:Marc Hanewinkel  Susan Hummel  Dominik A Cullmann
Institution:1. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany;2. USDA Forest Service, Pacific Northwest Research Station, Portland, OR, USA
Abstract:We evaluated the economic effects of a predicted shift from Norway spruce (Picea abies (Karst) to European beech (Fagus sylvatica (L) for a forest area of 1.3 million ha in southwest Germany. The shift was modelled with a generalised linear model (GLM) by using presence/absence data from the National Forest Inventory in Baden-Württemberg, a digital elevation model, and regionalised climate parameters from the period 1970 to 2000. Two scenarios from the International Panel on Climate Change (IPCC) (B1, A2) for three different time scales (2030, 2065, and 2100) were investigated. The GLM predicted a decrease of the suitable area for growing Norway spruce between 21% (B1, 2030) and 93% (A2, 2100) in comparison to 2000. This corresponds to a reduction in the potential area of Norway spruce from between 190,000 and 860,000 ha. The financial effect of this reduction in area was then evaluated by using a classical Faustmann approach, namely the land expectation value (LEV) as an economic parameter for forests of Norway spruce versus European beech. Underlying cash flows were derived from a distance dependent, single-tree growth simulator (SILVA) based on data for prices and costs of the year 2004. With an interest rate of r = 2%, the predicted loss in the potential area of Norway spruce is related to a decrease of the LEV between 690 million and 3.1 billion Euro. We discuss the sensitivity of these results to changing interest rates, risk levels, and rotation lengths. Results suggest that managing forestland for profitability will be increasingly difficult under both climate scenarios.
Keywords:Risk management process  Climate change  Simulation  Risk modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号